1
|
Subhiksha V, Okla MK, Sivaranjani PR, Abdel-Maksoud MA, Saleh IA, Abu-Harirah HA, Khan SS. Congregating Ag into γ-Bi 2O 3 coupled with CoFe 2O 4 for enhanced visible light photocatalytic degradation of ciprofloxacin, Cr(VI) reduction and genotoxicity studies. CHEMOSPHERE 2023; 342:140181. [PMID: 37716560 DOI: 10.1016/j.chemosphere.2023.140181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The work attempts to construct a highly effective γ-Bi2O3/CoFe2O4/Ag visible active photocatalyst for the enhanced degradation of ciprofloxacin (CIP) and Cr(VI) reduction. γ-Bi2O3/CoFe2O4/Ag photocatalyst was prepared by simple solid phase and co-precipitation methods. The nanosphere shaped CoFe2O4 photocatalyst are embedded on top of γ-Bi2O3 nanotriangle. The addition of Ag into γ-Bi2O3/CoFe2O4 heterojunction primitively facilitates the photocatalytic activity in higher rate. The quantitative analysis of photocatalyst possesses to have lower e-/h+ recombination rate compared to its counterparts. The prepared γ-Bi2O3/CoFe2O4/Ag photocatalyst showed 96.6% degradation of CIP in 220 min and 99.2% reduction of Cr(VI) in 120 min. Additionally, γ-Bi2O3/CoFe2O4/Ag showed outstanding recyclability and long-term stability with a degradation efficiency of 96.5% even after six cycles. The intermediate products formed were identified and the degradation pathway was elucidated by gas chromatography-mass spectrometry analysis. Total organic carbon measurement was carried over to assess the efficiency of complete degradation and the removal percentage was found to be 98%. The end product toxicity study towards bacteria was proven to have less toxicity level when compared to parent compound. Lastly, the genotoxicity of γ-Bi2O3/CoFe2O4/Ag photocatalyst was tested in Allium cepa and the results confirmed to have no cause of toxicity impacts. Overall, the work not only tends to provide a highly visible active γ-Bi2O3/CoFe2O4/Ag photocatalyst, but also attributes to have no further negative imprints in the environment.
Collapse
Affiliation(s)
- V Subhiksha
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P R Sivaranjani
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Hashem A Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, 13110, Jordan
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Hamd-Ghadareh S, Salimi A, Vaziry A. Ultrasensitive Ratiometric Fluorescence Bioassay for Accurate Detection of Covid-19-Specific Nucleocapsid Protein in Clinical Serum Samples Using Modified Cleavable Mesoporous SiO 2 Satellite-Enriched Carbon Dots. ACS Biomater Sci Eng 2023; 9:5279-5292. [PMID: 37606622 DOI: 10.1021/acsbiomaterials.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the presence of various autofluorescent compounds in biological samples like serum and the photobleaching of organic fluorophores, fluorescence sensing has limited practical applicability. This study describes the development of an improved ratiometric fluorescence assay to determine the nucleocapsid protein (N protein), one of the most conserved biomarkers of Covid-19 in spiked and serum samples using highly stable buffer-based near IR-dual emission carbon dots (CDs) encapsulated into the cavities of cleavable silica nanocapsule (SNCs) nanocomposite. The cavities of cleavable silica nanocapsules (SNCs) and the formed core-shell CDs@ SNCs were used as a superior reservoir of fluorescent markers produced by cohydrolyzing tetraethyl orthosilicate and diiminosilane linker, which held hundreds of CDs in silica shell frameworks. The SiO2 nanocomposite was modified with an N protein antibody that specifically paired to the receptor binding region of the Cov-19 spike protein subunit. CDs were taken out of SNCs by NaBH4 reduction, and the released CDs exhibited dual emission at 475 and 675 nm when excited at 400 nm. Ratiometric detection is completed over a binding-induced, concentration-dependent immuno-affinity of the N protein that drives the fluorescence quenching phenomenon between the CDs as fluorophore and the AuNPs as quencher. As the N protein concentration increased, the intensity of the red emission (675 nm) dropped, whereas the intensity of the green emission (475 nm) already remained constant, which is due to sandwich immunoassays of CDs around AuNPs. Using the exceptional fluorescent characteristics of CDs and the high selectivity of nanocomposite functionalized with N-protein antibody, the developed assay efficiently eliminates the autofluorescence background interference of serum samples. The fluorescence ratio (I475/I675) provides a limit of detection of 2 pg mL-1 over a linear range of 0.01 to 5 ng mL-1 and exhibits an amplified sensitivity of 54 times compared to conventional immunoassay using CDs as fluorescent labels. With one-step signal amplification and requiring small sample quantities (only 20 μL), this sensing platform can be effectively used for the accurate detection of N protein, and no cross-reactivity is detected in the presence of different interfering agents.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj-Iran
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
3
|
Shi Y, Li T, Zhao L, Liu Y, Ding K, Li D, He P, Jiang D, Liu J, Zhou H. Ultrathin MXene nanosheet-based TiO2/CdS heterostructure as a photoelectrochemical sensor for detection of CEA in human serum samples. Biosens Bioelectron 2023; 230:115287. [PMID: 37012191 DOI: 10.1016/j.bios.2023.115287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
To develop highly accurate and ultrasensitive strategies is of great importance for the clinical measurement, in particular, the detection of cancer biomarkers. Herein, we synthesized an ultrasensitive TiO2/MXene/CdS QDs (TiO2/MX/CdS) heterostructure as a photoelectrochemical immunosensor, which favors energy levels matching and fast electron transfer from CdS to TiO2 in the help of ultrathin MXene nanosheet. Dramatic photocurrent quenching can be observed upon incubation of the TiO2/MX/CdS electrode by Cu2+ solution from 96-well microplate, which caused by the formation of CuS and subsequent CuxS (x = 1, 2), reducing the absorption of light and boosting the electron-hole recombination upon irradiation. As a result, the as-prepared biosensor demonstrates a linearly increased photocurrent quenching percentage (Q%) value with CEA concentration ranging from 1 fg/mL to 10 ng/mL, as well as a low detection limit of 0.24 fg/mL. Benefit from its excellent stability, high selectivity and good reproducibility of as-prepared PEC immunosensor, we believe that this proposed strategy might provide new opportunities for clinical diagnosis of CEA and other tumor markers.
Collapse
|
4
|
Li B, Li Y, Li C, Yang J, Liu D, Wang H, Xu R, Zhang Y, Wei Q. An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9. Biosens Bioelectron 2023; 227:115180. [PMID: 36858021 DOI: 10.1016/j.bios.2023.115180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
In this study, a novel split-type electrochemical immunosensor based on controlled release strategy was proposed for sensitive analysis and detection of tumor marker carbohydrate antigen 199 (CA19-9). Specifically, glucose (Glu) was encapsulated in carrier mesoporous silica (MSN) with encapsulation technology, and surface functionalized Zinc sulfide (ZnS) caps were used as "gatekeepers". The complex is formed by encapsulating Glu within MSN with ZnS (ZnS@MSN-Glu) as a signal amplifier labeled on the signal antibody (Ab2). And the Ab2 can detect the presence of antibodies. To reduce the interference of biological analysis, the immune recognition process of ZnS@MSN-Glu-Ab2 bioconjugate and antigen was carried out in 96-well microplate, which did not interfere with the electrochemical analysis process. Therefore, the low sensitivity detection caused by biofouling of nanomaterials and immunoreaction on the testing platform is eliminated. Subsequently, the opening and timed release of mesopores were controlled by external stimuli, the disulfide bond cleavage by dithiothreitol (DTT), and glucose was effectively released. Then nickel cobalt layered double hydroxide (NiCo-LDH) were directly hydrothermally grown on carbon cloth (CC) electrodeposited with copper selenide (CuSe) nanosheets to construct three-dimensional (3D) cactus-like NiCo-LDH/CuSe/CC sensing platform. It can realize the catalytic oxidation of released glucose, triggering glucose-mediated signal amplification. The synergistic effect of the 3D cactus structure and active nanomaterials promotes electron conduction. Taking the detection of carbohydrate antigen CA19-9 as an example, the immunosensor shows a wide linear concentration range (0.001-100 U/mL) with the limit of detection of 0.0005 U/mL, realizing highly sensitive detection of CA19-9. This biosensing technique has considerable advantages and provides an innovative approach for trace detection of other biomarkers.
Collapse
Affiliation(s)
- Bing Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yunxiao Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinghui Yang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Deling Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huabin Wang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
5
|
Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Mikrochim Acta 2022; 189:461. [DOI: 10.1007/s00604-022-05562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
|
6
|
Wu J, Zhang Q, Kang L, Wu X, Li D, Wang Y, Huang Y, Xue J. Detection of carcinoembryonic antigens using a wavy gold-silver alloy nanoplate enhanced surface plasmon resonance imaging biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4713-4720. [PMID: 36342011 DOI: 10.1039/d2ay01523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carcinoembryonic antigen (CEA) is regarded as a promising broad spectrum tumor biomarker for clinical diagnosis, progression, and prognosis. Surface plasmon resonance imaging (SPRi) was considered as one of the powerful tools for immunoassay with advantages of label-free, real-time detection with high-throughput. Herein, wavy gold-silver alloy nanoplates functionalized with anti-CEA antibodies providing high protein loading capacity and high mass are used as signal enhancers for CEA detection through SPRi sandwich assay. The present method exhibits a dynamic range for CEA determination from 0.1 to 312.5 ng mL-1 and a detection limit of 0.55 ng mL-1, well below normal physiological levels. This biosensing approach demonstrates the advantages of wavy gold-silver alloy nanoplates compared to conventional gold nanoparticles as a signal amplifier to enhance the SPRi signal, which is expected to become a new prospect for detection of cancer markers in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Jiangling Wu
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Qiongyuan Zhang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Lina Kang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Xiaotian Wu
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Daikun Li
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Xiao HJ, Liao XJ, Wang H, Ren SW, Cao JT, Liu YM. In Situ Formation of Bi2MoO6-Bi2S3 Heterostructure: A Proof-Of-Concept Study for Photoelectrochemical Bioassay of l-Cysteine. Front Chem 2022; 10:845617. [PMID: 35665063 PMCID: PMC9158332 DOI: 10.3389/fchem.2022.845617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A novel signal-increased photoelectrochemical (PEC) biosensor for l-cysteine (L-Cys) was proposed based on the Bi2MoO6–Bi2S3 heterostructure formed in situ on the indium–tin oxide (ITO) electrode. To fabricate the PEC biosensor, Bi2MoO6 nanoparticles were prepared by a hydrothermal method and coated on a bare ITO electrode. When L-Cys existed, Bi2S3 was formed in situ on the interface of the Bi2MoO6/ITO electrode by a chemical displacement reaction. Under the visible light irradiation, the Bi2MoO6–Bi2S3/ITO electrode exhibited evident enhancement in photocurrent response compared with the Bi2MoO6/ITO electrode, owing to the signal-increased sensing system and the excellent property of the formed Bi2MoO6–Bi2S3 heterostructure such as the widened light absorption range and efficient separation of photo-induced electron–hole pairs. Under the optimal conditions, the sensor for L-Cys detection has a linear range from 5.0 × 10−11 to 1.0 × 10−4 mol L−1 and a detection limit of 5.0 × 10−12 mol L−1. The recoveries ranging from 90.0% to 110.0% for determining L-Cys in human serum samples validated the applicability of the biosensor. This strategy not only provides a method for L-Cys detection but also broadens the application of the PEC bioanalysis based on in situ formation of photoactive materials.
Collapse
Affiliation(s)
- Hui-Jin Xiao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Xiao-Jing Liao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Hui Wang
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | | | - Jun-Tao Cao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| | - Yan-Ming Liu
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| |
Collapse
|
8
|
Adesina A, Adeniyi O, Mashazi P. Impedimetric detection of CRP using oriented antibodies: monoclonal as capture and magnetic nanobioprobes with polyclonal for sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
TiO2/CuInS2-sensitized structure for sensitive photoelectrochemical immunoassay of cortisol in saliva. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Mesoporous Silica Nanoparticles in Chemical Detection: From Small Species to Large Bio-Molecules. SENSORS 2021; 22:s22010261. [PMID: 35009801 PMCID: PMC8749741 DOI: 10.3390/s22010261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
A recompilation of applications of mesoporous silica nanoparticles in sensing from the last five years is presented. Its high potential, especially as hybrid materials combined with organic or bio-molecules, is shown. Adding to the multiplying effect of loading high amounts of the transducer into the pores, the selectivity attained by the interaction of the analyte with the layer decorating the material is described. Examples of the different methodologies are presented.
Collapse
|
11
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
12
|
Kizhakkumpat A, Syed A, Elgorban AM, Bahkali AH, Khan SS. The toxicity analysis of PVP, PVA and PEG surface functionalized ZnO nanoparticles on embryonic as well as adult Danio rerio. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:824. [PMID: 34792658 DOI: 10.1007/s10661-021-09606-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Globally, the production of zinc oxide nanoparticles (ZnO NPs) increased due to its wide applications including cosmetics, paints etc., and gets accumulated in the environment during their production, use or end-of-life. The toxic effects of the NPs vary with the presence of various surface modification agents. In the current report, toxic effect of bare and capped ZnO NPs with polymeric surface modifying agent including polyvinyl alcohol (PVA), polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) is studied against adult as well as embryonic zebra fish. The surface capped NPs showed great variation in toxicity levels. It was observed that ZnO-PVA showed highly reduced toxic effects relative to ZnO-PEG and ZnO-PVP. Further, various environmental agents including humic acid can also have an impact on NPs toxicity. ZnO particles showed increased toxic effect in humic acid presence. The uptake of ZnO particles by D. rerio was high in the order of PVP-, PEG- and PVA- followed by bare-ZnO. The current investigation found that ZnO NPs dissolution and uptake are the major factors which cause the toxicity against adult as well as embryonic zebra fishes respectively.
Collapse
Affiliation(s)
- Akhil Kizhakkumpat
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Tamil Nadu, Thanjavur, 613401, India
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
13
|
Dashtian K, Shahbazi S, Tayebi M, Masoumi Z. A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zhou N, Xu X, Li X, Yao W, He X, Dong Y, Liu D, Hu X, Lin Y, Xie Z, Qu D, Zhang C. A sandwich-type photoelectrochemical aptasensor using Au/BiVO 4 and CdS quantum dots for carcinoembryonic antigen assay. Analyst 2021; 146:5904-5912. [PMID: 34570840 DOI: 10.1039/d1an01053k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel sandwich-type photoelectrochemical (PEC) aptasensor for the carcinoembryonic antigen (CEA) assay was fabricated using the CEA aptamer, Au/BiVO4 and CdS quantum dots (CdS QDs). In virtue of the localized surface plasmon resonance effect of Au nanoparticles, Au/BiVO4 showed an effective utilization of visible light and excellent photoactivity, and was employed as the photoanode. After CdS QDs were conjugated to Au/BiVO4 through the sandwich structure based on the hybridization of the CEA aptamer with two partially complementary single-stranded DNA molecules, the photocurrents were further enhanced by a resonance energy transfer between CdS QDs and Au nanoparticles. Meanwhile, the consumption of the photo-induced holes by ascorbic acid could also retard the combination of the electron-hole pairs and cause an increase of the photocurrents. However, the specific recognition of CEA by the CEA aptamer could destroy the sandwich structure and remarkably weaken the photocurrent response. Thus, the quantitative detection of CEA was connected with the decrease of the photocurrent. Benefitting from the above methods for signal enhancement, the PEC aptasensor showed a wide sensing range of 0.0001-10 ng mL-1 and a low detection limit of 0.047 pg mL-1 for CEA detection. The specificity, stability and recoveries of the PEC aptasensor were also excellent. Therefore, the construction of the present PEC aptasensor provides a universal and practical method for sensing other substances.
Collapse
Affiliation(s)
- Nan Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xiaofan Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Wengao Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xiaohang He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yulin Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Xiaosong Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Mishra S, Chaturvedi N. Simulation and machine learning modelling based comparative study of InAlGaN and AlGaN high electron mobility transistors for the detection of HER-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3659-3666. [PMID: 34323894 DOI: 10.1039/d1ay00707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of the cancer biomarker human epidermal growth factor receptor 2 (HER-2) has always been challenging at the early stages of cancer due to its very small presence. A systematic study of biosensors to achieve optimum sensitivity is of paramount significance. Thus, in this paper, we report a simulation study and machine learning (ML) based model for the comparative analysis of indium aluminum gallium nitride (InAlGaN) and aluminum gallium nitride (AlGaN) based high electron mobility transistors (HEMTs) for the detection of HER-2. The sensing performance of the InAlGaN based HEMT exhibits 1.8 times higher sensitivity as compared to that of the AlGaN based HEMT. The presented work also provides insights into the importance of the pH of the medium of HER-2. The results produced by the developed ML-based model are in good agreement with the simulation results. The model is not only capable of predicting within the trained range but also it can predict reasonably well even beyond the range of the training data. The introduction of a ML-based model significantly reduces the computational cost, time to perform similar type of simulations and, unlike the physics-based modelling, it also eliminates the need for empirical fitting of the model parameters.
Collapse
Affiliation(s)
- Shivanshu Mishra
- CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India.
| | | |
Collapse
|
16
|
Shu H, Zhao L, Li X, Gong J, Yin G, Chen H. Silica nanoparticle-modified microcomb electrode for voltammetry detection of osteopontin with high sensitivity. Biotechnol Appl Biochem 2021; 69:1733-1740. [PMID: 34423464 DOI: 10.1002/bab.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Osteosarcoma is a commonly occurring bone malignancy, and it is the second most common cause of cancer deaths in adolescents and children. A sensitive silica nanoparticle (Si-NP) modified current-volt sensor was introduced to identify the osteopontin antigen, a well-known biomarker for osteosarcoma. Si-NP was extracted from the rice husk ash and utilized for the surface functionalization on the interdigitated microelectrode sensing surface. Extracted Si-NP has a spherical shape with uniform distribution, and it is confirmed by field emission scanning electron microscopy and field-emission transmission electron microscopy. Si-NP was layered on the electrode surface through a (3-aminopropyl)triethoxysilane amine linker, and the antibody was immobilized on Si-NP through a glutaraldehyde linker. Osteopontin was effectively detected on the antibody-attached surface, and the determination limit was 0.6 ng/mL. The regression was determined as y = 0.9366x - 1.1113 and the R2 value was 0.9331 and the detection limit of osteopontin was 0.6 ng/mL in the range between 0.3 and 5 ng/mL. In addition, control performance with nonimmune antibodies and albumin did not change the current volt, showing the specific osteopontin identification. This research work brings out the easy and cost-effective method to diagnose osteosarcoma and its etiology.
Collapse
Affiliation(s)
- Hexi Shu
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Liangliang Zhao
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Xiaoxia Li
- Department of Respiratory Medicine, Dezhou Municipal Hospital, Dezhou City, China
| | - Jinpeng Gong
- The First Department of Trauma, Eastern Hospital, Yantaishan Hospital, Yantai City, China
| | - Guorui Yin
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Hulin Chen
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| |
Collapse
|
17
|
Cao JT, Lv JL, Liao XJ, Ma SH, Liu YM. Photogenerated Hole-Induced Chemical-Chemical Redox Cycling Strategy on a Direct Z-Scheme Bi 2S 3/Bi 2MoO 6 Heterostructure Photoelectrode: Toward an Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021; 93:9920-9926. [PMID: 34213883 DOI: 10.1021/acs.analchem.1c02175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To achieve high sensitivity for biomolecule detection in photoelectrochemical (PEC) bioanalysis, the ideal photoelectrode and ingenious signaling mechanism play crucial roles. Herein, the feasibility of the photogenerated hole-induced chemical-chemical redox cycling amplification strategy on a Z-scheme heterostructure photoelectrode was validated, and the strategy toward enhanced multiple signal amplification for advanced PEC immunoassay application was developed. Specifically, a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure was synthesized via a classic hydrothermal method and served as a photoelectrode for the signal response. Under the illumination, the PEC chemical-chemical redox cycling (PECCC) among 4-aminophenol generated by the enzymatic catalysis from a sandwich immunoassay, ferrocene as a mediator, and tris (2-carboxyethyl) phosphine as a reducing agent was run on the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode. Exemplified by interleukin-6 (IL-6) as the target, the applicability of the strategy was studied in a PEC immunoassay. Thanks to the multiple signal amplification originating from the high efficiency of the PECCC redox cycling system, the enzymatic amplification, and the fine performance of the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode, the assay for IL-6 exhibits a very low detection limit of 2.0 × 10-14 g/mL with a linear range from 5.0 × 10-14 to 1.0 × 10-8 g/mL. This work first validates the feasibility of the PECCC redox cycling on the Z-scheme heterostructure photoelectrode and the good performance of the strategy in PEC bioanalysis. We envision that it would provide a new prospective for highly sensitive PEC bioanalysis on the basis of a Z-scheme heterostructure.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jing-Lu Lv
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
18
|
Zhu L, Wei T, Yu R, Tu W, Dai Z. A versatile switchable dual-modal colorimetric and photoelectrochemical biosensing strategy via light-controlled sway of a signal-output transverter. Chem Commun (Camb) 2021; 57:3223-3226. [PMID: 33645600 DOI: 10.1039/d1cc00324k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A design criterion to construct a versatile dual-modal colorimetric and PEC biosensing platform for switching the corresponding mode freely is proposed via integration of a natural enzyme, light-activated nanozyme and light-controlled swayable signal-output transverter. A switchable dual-modal platform toward DNA analysis is developed as a proof of concept.
Collapse
Affiliation(s)
- Lingling Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | | | | | | | |
Collapse
|
19
|
Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. J Mater Chem B 2021; 8:9863-9876. [PMID: 33047764 DOI: 10.1039/d0tb01868f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The application of mesoporous silica nanoparticles (MSNs) as drug delivery systems to deliver drugs, proteins, and genes has expanded considerably in recent years, using in vitro and animal studies. For future translation to clinical applications, the biological safety aspects of MSNs must be considered carefully. This paper reviews the biosafety of MSNs, examining key issues such as biocompatibility, effects on immune cells and erythrocytes, biodistribution, biodegradation and clearance, and how these vary depending on the effects of the physical and chemical properties of MSNs such as particle size, porosity, morphology, surface charge, and chemical modifications. The future use of MSNs as a delivery system must extend beyond what has been learnt thus far using rodent animal models to encompass larger animals.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
20
|
Liposome encapsulated electron donor strategy for signal-on CYFRA 21-1 photoelectrochemical analysis. Mikrochim Acta 2021; 188:75. [PMID: 33558974 DOI: 10.1007/s00604-021-04721-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 01/23/2023]
Abstract
A novel electron donor controlled-release system is proposed based on liposome encapsulated L-cysteine for the sensitive determination of cytokeratin 19 fragment 21-1 (CYFRA 21-1). On the one hand, a defective TiO2 modified with methylene blue was employed as a photoactive platform which exhibited a high photoelectrochemical (PEC) response owing to the introduction of oxygen vacancies and the high photosensitivity of the dye. On the other hand, L-cysteine as the sacrificial electron donor was encapsulated in the vesicles of liposomes, and this composite was used as the signal amplification factor, which is labeled on the secondary antibody of CYFRA 21-1 to further improve the photocurrent sensitivity. The excellent electron transfer path in photoactive materials coupled with the skilful electron donor controlled-release system, contributed to the sensitive PEC analysis of CYFRA 21-1 underoptimum conditions. The PEC immunoassay showed a linear current response in the range 0.0001-100 ng/mL with a detection limitof 37 fg/mL. Enhanced stability and satisfactory reproducibility were also achieved. The proposed concept provides a novel signal-on strategy for the sensitive detection of other cancer markers in the electrochemical sensing field.
Collapse
|
21
|
Zhang S, Feng L, Li P, Zhang L, Chen X, Chu S, Gao Y, Xie S, Jiang J, Wang H. In situ creation of ZnO@CdS nanoflowers on ITO electrodes for sensitive photoelectrochemical detection of copper ions in blood. J Mater Chem B 2021; 9:5869-5876. [PMID: 34259308 DOI: 10.1039/d1tb00989c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective and sensitive photoelectrochemical (PEC) detection method has been developed for the analysis of copper (Cu2+) ions using nanoflower-like ZnO@CdS heterojunctions, of which ZnO was first in situ grown onto the indium tin oxide electrodes by a hydrothermal method and then coated with CdS through the chemical bath deposition route. It was discovered that the ZnO@CdS heterojunction so formed could serve as a photosensitive catalyst with improved charge separation for visible-light-driven PEC responses. Enhanced visible-light harvesting of nanocomposites could also be expected with CdS as the visible-light sensitizer. Furthermore, the introduction of Cu2+ ions could cause a rational decrease in the photocurrents of nanocomposites through the specific interaction between CdS and Cu2+ ions. A ZnO@CdS heterojunction-based PEC sensor was thereby developed for the detection of Cu2+ ions in blood in the linear concentrations ranging from 0.50 to 80 nM, with a limit of detection of 0.18 nM. Such a heterojunction-based PEC detection platform constructed using two photocatalytic materials with matched band structures are promising for a wide range of applications for sensing Cu2+ ions in clinical diagnostics, food monitoring, and environmental analysis.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Luping Feng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Lixiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Xi Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Su Chu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Shujing Xie
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jiatian Jiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China and School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China.
| |
Collapse
|
22
|
Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta 2020; 220:121436. [PMID: 32928438 DOI: 10.1016/j.talanta.2020.121436] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023]
Abstract
Rapid and accurate monitoring of cancer cells with high sensitivity is essential for a successful cancer treatment. As high-affinity nucleic acid ligands, aptamers can improve the properties of detection methods by conjugating with intracellular or extracellular cancer biomarkers. Despite the advances in the early detection and treatment of cancer cells, lacking effective early detection tools is one of the causes of a high mortality rate. Aptasensors, which are based on the specificity of aptamer-target recognition, with transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. In this review, some selective and sensitive methods were summarized based on advanced nanomaterials towards aptasensing of cancer cells, such as blood, breast, cervical, colon, gastric, liver, and lung cancer cells. This review summarizes advances from 2010 to June 2020 in the development of aptasensors for cancer cell detection. Various aptasensing strategies are assessed according to their potential for reaching relevant limits of sensitivity, specificity, and degrees of multiplexing. Furthermore, we address the remaining challenges and opportunities to integrate aptasensing platforms into point-of-care solutions. Finally, the advantages and limitations of aptamer-based aptasensing strategies were reviewed.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Xu R, Liu L, Liu X, Li Y, Feng R, Wang H, Fan D, Wu D, Wei Q. Novel Electron Donor Encapsulation Assay Based on the Split-type Photoelectrochemical Interface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7366-7371. [PMID: 31961654 DOI: 10.1021/acsami.9b21804] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, a controlled-release photoelectrochemical (PEC) immunosensor is proposed on the basis of a novel encapsulation strategy by all-inorganic semiconductor materials. The controlled-release transmit system has been prepared and represented on account of a group-functional mesoporous silica nanosphere (MSN), utilizing surface-functionalized cadmium sulfide (CdS) nanoparticles as mobilizable caps to encapsulate a PEC electron donor ascorbic acid (AA) within the MSN mesoporous structure. This encapsulation strategy proceeds without any enzyme and acid/alkali to achieve the release of an electron donor. The complex is formed by encapsulating AA within MSN with CdS (CdS@MSN-AA) as a signal amplifier labeled on the secondary antibody. In addition, the immunological recognition process was performed in a 96-well plate, and the reciprocal interference between biorecognition and PEC analysis could be eliminated through a split-type framework. Bi2S3-sensitized porous In2O3 nanoparticles as a substrate matrix provide basic PEC response. The developed sensor exhibited a mensurable output of procalcitonin (PCT) concentration (as an example) in the detection range of 0.001-200 ng/mL along with a limit of detection of 0.31 pg/mL. Featuring the novel method for electron release, this sensitive PEC strategy provides an innovative way for the potential application for other targets.
Collapse
Affiliation(s)
- Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Ruiqing Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , Shandong , China
| |
Collapse
|
25
|
Zhang L, Xue J, Gao C, Xu M, Zhao P, Ge S, Yu J. Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01435d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a target-induced signal quencher release strategy was proposed to construct a sensitive photoelectrochemical (PEC) sensor.
Collapse
Affiliation(s)
- Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Jie Xue
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Meiling Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research
- University of Jinan
- Jinan 250022
- China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
26
|
|
27
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure. Biosens Bioelectron 2018; 116:23-29. [DOI: 10.1016/j.bios.2018.05.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
|
29
|
Liu XP, Chen JS, Mao CJ, Niu HL, Song JM, Jin BK. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite. Anal Chim Acta 2018; 1025:99-107. [DOI: 10.1016/j.aca.2018.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
30
|
Xue J, Gao C, Zhang L, Cui K, He W, Yu J. A single-interface photoelectrochemical sensor based on branched TiO2 nanorods@strontium titanate for the detection of two biomarkers. J Mater Chem B 2018; 6:4697-4703. [DOI: 10.1039/c8tb00992a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Based on the enhanced photogenerated charge-separation properties of B-TiO2 NRs@SrTiO3 heterostructures, a photoelectrochemical sensor for detecting alpha fetoprotein and cancer antigen 153 at a single interface was first established.
Collapse
Affiliation(s)
- Jie Xue
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Wenxing He
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|