1
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Jia Z, Xie R, Hu Y, Ju X, Wang W, Liu Z, Chu L. Thermochromic Photonic Crystal Microspheres with Uniform Color Display and Wide Coloration Range. Macromol Rapid Commun 2023; 44:e2200800. [PMID: 36525291 DOI: 10.1002/marc.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Indexed: 12/23/2022]
Abstract
Thermochromic microspheres based on poly(N-isopropylacrylamide) attract much attention in detection and sensor due to the noticeable color response and fast response rate. However, some issues such as uneven color display and narrow coloration range still limit their practical applications. Herein, novel thermochromic microspheres with homogeneous color displays and wide thermochromic range are designed by combining the microfluidic technology with the magnetically-induced self-assembly technique and copolymerizing acrylamide (AM) with N-isopropylacrylamide. The photonic crystal structure with especially even colors is fast and conveniently constructed by magnetic assembly. The addition of AM makes the microspheres more hydrophilic and thus leading to a broader coloration range. The relationship between the structural color display and both the microstructures of photonic crystals and the thermo-responsive properties of gel matrix are elucidated. The detectable temperature of microspheres rises to as high as 60°C, and displays bright iridescent color variations from orange to blue-violet in the heating process. Importantly, their shrinking or swelling equilibrium can be reached in 80 and 105 s. Such microspheres are successfully used to visually indicate the appropriate temperature of enzymatic reaction, and have great potential in practical applications such as visual temperature detection and efficiency monitoring of chemical reactions.
Collapse
Affiliation(s)
- Zhihan Jia
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yaqin Hu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaojie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Liangyin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
3
|
Shen H, Lin Q, Tang H, Tian Y, Zhang X. Fabrication of Temperature- and Alcohol-Responsive Photonic Crystal Hydrogel and Its Application for Sustained Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3785-3794. [PMID: 35298167 DOI: 10.1021/acs.langmuir.1c03378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, crack-free photonic crystal templates with enhanced color contrast were first demonstrated by the coassembly of polystyrene (PS) microspheres and graphene oxide (GO). Then, photonic crystal hydrogels (PCHs) with quick responses to temperature and alcohol solution concentration changes were fabricated by photopolymerization of monomers in the gaps of the self-assembled colloidal crystal templates. The structural color of the PCHs changed from yellow to blue within 120 s as the temperature rose from 25 to 40 °C, whereas upon a decrease in temperature from 40 to 25 °C, the structural color changed from blue to yellow. The structural color of the PCHs also shows an obvious response with the concentration of alcohol solution ranging from 40 to 100 wt %. The quick responses of the PCHs' structural color to changes in temperature and alcohol solution concentration are attributed to the temperature sensitivity of poly(N-isopropylacrylamide) and preferential adsorption and swelling of the alcohol solution for the polymer chains. Furthermore, moxifloxacin (Mox) was loaded into PCHs by hydrogel swelling and exhibited sustained released by increasing the temperature. The sustained release process was facilely monitored by observing the corresponding color changes in real time. The rapid and visible response offers the fabricated PCHs great potential application prospects in the semiquantitative analysis of alcohol concentration and intelligent drug delivery.
Collapse
Affiliation(s)
- Huifang Shen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huachun Tang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuqin Tian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Dong X, Chi J, Shao C, Lei L, Yang L, Zhao C, Liu H. Multifunctional hydrogel microsphere with reflection in near-infrared region for in vivo pH monitoring and drug release in tumor microenvironment. CHEMICAL ENGINEERING JOURNAL 2021; 421:127873. [DOI: 10.1016/j.cej.2020.127873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
5
|
Wang C, Xiao F, Chen Q, Wang S, Zhou J, Wu Z. A two-dimensional photonic crystal hydrogel biosensor for colorimetric detection of penicillin G and penicillinase inhibitors. Analyst 2021; 146:502-508. [PMID: 33210667 DOI: 10.1039/d0an01946a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple penicillinase functionalized two-dimensional photonic crystal hydrogel (2DPPCH) biosensor was developed for colorimetric detection of penicillin G and penicillinase inhibitors. The penicillinase can specifically recognize penicillin G and catalyze it to produce penicilloic acid, which decreases the pH of the hydrogel microenvironment and shrinks the pH-sensitive hydrogel. The particle spacing decrease of the 2D photonic crystal array induced by the hydrogel shrinkage further causes a blue-shift in the diffraction wavelength. While the hydrolysis reaction is repressed upon treatment with clavulanate potassium (a kind of penicillinase inhibitor), no significant change in the diffraction wavelength is found. The detection of targets can be achieved by measuring the Debye diffraction ring diameter or observing the structural color change in the visible region. The lowest detectable concentrations for penicillin G and clavulanate potassium are 1 μM and 0.1 μM, respectively. Moreover, the 2DPPCH is proved to exhibit high selectivity and an excellent regeneration property, and it shows satisfactory performance for penicillin G analysis in real water samples.
Collapse
Affiliation(s)
- Changping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | |
Collapse
|
6
|
Shang Y, Chen Z, Zhang Z, Yang Y, Zhao Y. Heart-on-chips screening based on photonic crystals. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00073-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Chiappini A, Tran LTN, Trejo-García PM, Zur L, Lukowiak A, Ferrari M, Righini GC. Photonic Crystal Stimuli-Responsive Chromatic Sensors: A Short Review. MICROMACHINES 2020; 11:E290. [PMID: 32164336 PMCID: PMC7143502 DOI: 10.3390/mi11030290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
Photonic crystals (PhC) are spatially ordered structures with lattice parameters comparable to the wavelength of propagating light. Their geometrical and refractive index features lead to an energy band structure for photons, which may allow or forbid the propagation of electromagnetic waves in a limited frequency range. These unique properties have attracted much attention for both theoretical and applied research. Devices such as high-reflection omnidirectional mirrors, low-loss waveguides, and high- and low-reflection coatings have been demonstrated, and several application areas have been explored, from optical communications and color displays to energy harvest and sensors. In this latter area, photonic crystal fibers (PCF) have proven to be very suitable for the development of highly performing sensors, but one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) PhCs have been successfully employed, too. The working principle of most PhC sensors is based on the fact that any physical phenomenon which affects the periodicity and the refractive index of the PhC structure induces changes in the intensity and spectral characteristics of the reflected, transmitted or diffracted light; thus, optical measurements allow one to sense, for instance, temperature, pressure, strain, chemical parameters, like pH and ionic strength, and the presence of chemical or biological elements. In the present article, after a brief general introduction, we present a review of the state of the art of PhC sensors, with particular reference to our own results in the field of mechanochromic sensors. We believe that PhC sensors based on changes of structural color and mechanochromic effect are able to provide a promising, technologically simple, low-cost platform for further developing devices and functionalities.
Collapse
Affiliation(s)
- Andrea Chiappini
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, 38123 Povo (Trento), Italy; (A.C.); (P.M.T.-G.); (L.Z.); (M.F.)
| | - Lam Thi Ngoc Tran
- Department of Materials Technology, Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Min City 70000, Vietnam;
| | - Pablo Marco Trejo-García
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, 38123 Povo (Trento), Italy; (A.C.); (P.M.T.-G.); (L.Z.); (M.F.)
- Faculty of Physico-Mathematical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Lidia Zur
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, 38123 Povo (Trento), Italy; (A.C.); (P.M.T.-G.); (L.Z.); (M.F.)
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, PAS, 50-422 Wroclaw, Poland;
| | - Maurizio Ferrari
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, 38123 Povo (Trento), Italy; (A.C.); (P.M.T.-G.); (L.Z.); (M.F.)
| | - Giancarlo C. Righini
- Nello Carrara Institute of Applied Physics (IFAC CNR), 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
8
|
|