1
|
Roszyk M, Wałęsa-Chorab M. Electrochemical and Optical Properties of D-A-A-A-D Azomethine Triad and Its NIR-Active Polymer. Molecules 2024; 29:4470. [PMID: 39339464 PMCID: PMC11434257 DOI: 10.3390/molecules29184470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The azomethine TPA-(BTZ)3-TPA with a donor-acceptor-acceptor-acceptor-donor structure has been synthesized and characterized. Azomethine TPA-(BTZ)3-TPA exhibited luminescence properties and a positive solvatochromic effect. Electropolymerization on terminated triphenylamine groups was used to obtain a thin layer of the polyazomethine poly-[TPA-(BTZ)3-TPA]. Further investigation of oxidation/reduction properties of poly-[TPA-(BTZ)3-TPA] via cyclic voltammetry showed that the polymer undergoes two reversible oxidation/reduction processes due to the presence of tetraphenylbenzidine moieties. Electrochromic properties of the polyazomethine poly-[TPA-(BTZ)3-TPA] were investigated via spectroelectrochemistry. It was observed that the polymer in its neutral state is orange, and the color changes to green upon electro-oxidation. The stability of the polymer during multiple oxidation/reduction cycles, response times, and coloration efficiency were also investigated.
Collapse
Affiliation(s)
- Mateusz Roszyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Jia S, Lin EY, Mobley EB, Lim I, Guo L, Kallepu S, Low PS, Sletten EM. Water-soluble chromenylium dyes for shortwave infrared imaging in mice. Chem 2023; 9:3648-3665. [PMID: 38283614 PMCID: PMC10817055 DOI: 10.1016/j.chempr.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In vivo imaging using shortwave infrared light (SWIR, 1000-2000 nm) benefits from deeper penetration and higher resolution compared to using visible and near-infrared wavelengths. However, the development of biocompatible SWIR contrast agents remains challenging. Despite recent advancements, small molecule SWIR fluorophores are often hindered by their significant hydrophobicity. We report a platform for generating a panel of soluble and functional dyes for SWIR imaging by late-stage functionalization of a versatile fluorophore intermediate, affording water-soluble dyes with bright SWIR fluorescence in serum. Specifically, a tetra-sulfonate derivative enables clear video-rate imaging of vasculature with only 0.05 nmol dye, and a tetra-ammonium dye shows strong cellular retention for tracking of tumor growth. Additionally, incorporation of phosphonate functionality enables imaging of bone in awake mice. This modular design provides insights for facile derivatization of existing SWIR fluorophores to introduce both solubility and bioactivity towards in vivo bioimaging.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Present address: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Eric Y. Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Emily B. Mobley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Lei Guo
- Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
- Present address: Department of Civil Engineering, University of Arkansas, Fayetteville, Fayetteville, AR 72701, United States
| | - Shivakrishna Kallepu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Lead contact
| |
Collapse
|
3
|
Dey A, Gare S, Swain S, Bhattacharya P, Dhyani V, Giri L, Neogi S. 3D
imaging and quantification of
PLL
coated fluorescent
ZnO NP
distribution and
ROS
accumulation using
LSCM. AIChE J 2022. [DOI: 10.1002/aic.17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aishee Dey
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| | - Suman Gare
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Sarpras Swain
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Proma Bhattacharya
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| | - Vaibhav Dhyani
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Lopamudra Giri
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Sudarsan Neogi
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
4
|
Xia W, Liu C, Ye S, Wang L, Liu R. Synthesis of A Sulfonamide-Substituted Benzothiadiazole-Based Fluorescent Dye and Study of Its Application for Long-Term Cancer Cell Tracking. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Qin M, Wu Z, Zhang J, Xing X, Zhu L, Zhong Y, Guo Y, Zhao G. The aggregation-induced emission of Methyl-bis-(4-triphenylvinyl-benzyl)-amine in solution with torsional and locked stacking effects. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zhang Q, Hu X, Dai X, Sun J, Gao F. A photostable reaction-based A-A-A type two-photon fluorescent probe for rapid detection and imaging of sulfur dioxide. J Mater Chem B 2021; 9:3554-3562. [PMID: 33909752 DOI: 10.1039/d1tb00433f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel reaction-based A-A-A (acceptor-acceptor-acceptor) type two-photon fluorescent probe, BTC, is prepared using the benzothiadiazole (BTD) scaffold as the two-photon fluorophore and electron-accepting centre. Two β-chlorovinyl aldehyde moieties are symmetrically connected to both ends of the BTD scaffold and act as reaction groups to recognize SO2 and quenching groups to make the dis-activated probe stay at off-state due to their weak electron-withdrawing effect. In the presence of SO2 derivatives, the aldehyde groups are consumed through aldehyde addition, resulting in the activation of intramolecular charge transfer (ICT) processes and therefore recovering the fluorescence of the probe. The designed probe shows excellent two-photon properties including large two-photon absorption cross-sections (TPA) of 91 GM and photostability. Beyond these, the BTC probe exhibits a fast response to SO2 within 30 s, high specificity without foreign interference and a broad detection range from 500 nM to 120 μM with a detection limit of 190 nM. The designed fluorescent probe is further applied to the two-photon imaging of exogenous and endogenous SO2 derivatives under different physiological processes in HeLa cells and zebrafish with satisfactory results. We believe that the proposed design strategy can be extended to fabricate versatile BTD-based two-photon fluorescent probes through molecular engineering for further applications in bioassays and two-photon imaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
7
|
Wang Y, Zhang Y, Wang J, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev 2019; 143:161-176. [PMID: 30529308 DOI: 10.1016/j.addr.2018.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/18/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
Abstract
The vigorous development of nanotechnology has been accompanied by an equally strong interest and research efforts in nano-based drug delivery systems (NDDSs). However, only a few NDDSs have been translated into clinic thus far. One of the important hurdles is the lack of tools to comprehensively and directly trace the biological fate of NDDSs. Recently, aggregation-induced emission (AIE) fluorophores have emerged as attractive bioimaging tools due to flexible controllability, negligible toxicity and superior photostability. Herein, we recapitulate the current advances in the application of AIE fluorophores to monitor NDDSs both in vitro and in vivo. Particularly, we discuss the cellular fates of self-indicating and stimuli-responsive NDDSs with AIE fluorophores. Moreover, we highlight the in vivo application of AIE agents on the long-term tracking of therapeutics and the multi-modal monitoring of diagnostics in NDDSs. Challenges and opportunities in AIE-guided exploration of NDDSs are also discussed in detail.
Collapse
Affiliation(s)
- Yufei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Deng K, Wang L, Xia Q, Liu R, Qu J. A nucleic acid-specific fluorescent probe for nucleolus imaging in living cells. Talanta 2019; 192:212-219. [DOI: 10.1016/j.talanta.2018.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/22/2018] [Accepted: 09/08/2018] [Indexed: 02/04/2023]
|