1
|
Wei Y, Liang Y, Qi K, Gu Z, Yan B, Xie H. Exploring the application of piezoelectric ceramics in bone regeneration. J Biomater Appl 2024; 39:409-420. [PMID: 39152927 DOI: 10.1177/08853282241274528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Yige Wei
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kailong Qi
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Amantino CF, do Amaral SR, Aires-Fernandes M, Oliani SM, Tedesco AC, Primo FL. Development of 3D skin equivalents for application in photodynamic biostimulation therapy assays using curcumin nanocapsules. Heliyon 2024; 10:e32808. [PMID: 38975186 PMCID: PMC11226835 DOI: 10.1016/j.heliyon.2024.e32808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 μg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).
Collapse
Affiliation(s)
- Camila F. Amantino
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Stéphanie R. do Amaral
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Mariza Aires-Fernandes
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Sonia M. Oliani
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Antonio C. Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, 14010-100, Brazil
| | - Fernando L. Primo
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
3
|
Jeong D, Jang G, Jung WK, Park YH, Bae H. Stretchable zein-coated alginate fiber for aligning muscle cells to artificially produce cultivated meat. NPJ Sci Food 2024; 8:13. [PMID: 38374073 PMCID: PMC10876650 DOI: 10.1038/s41538-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
Numerous studies have explored the cultivation of muscle cells using non-animal materials for cultivated meat production. Achieving muscle cell proliferation and alignment using 3D scaffolds made from plant-based materials remains challenging. This study introduces a technique to culture and align muscle cells using only plant-based materials, avoiding toxic chemical modifications. Zein-alginate fibers (ZA fibers) were fabricated by coating zein protein onto alginate fibers (A fibers). Zein's excellent cell compatibility and biodegradability enable high cell adhesion and proliferation rates, and the good ductility of the ZA fibers enable a high strain rate (>75%). We demonstrate mature and aligned myotube formation in ZA fibers, providing a simple way to align muscle cells using plant-based materials. Additionally, cultivated meat was constructed by assembling muscle, fat, and vessel fibers. This method holds promise for the future mass production of cultivated meat.
Collapse
Affiliation(s)
- Dayi Jeong
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do, 16614, Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do, 16614, Republic of Korea
- Department of Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Wei Z, Dai S, Huang J, Hu X, Ge C, Zhang X, Yang K, Shao P, Sun P, Xiang N. Soy Protein Amyloid Fibril Scaffold for Cultivated Meat Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15108-15119. [PMID: 36916732 DOI: 10.1021/acsami.2c21702] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is important to have sustainable and edible scaffolds to produce cultivated meat. In this research, three-dimensional (3D) porous scaffolds were developed by soy protein amyloid fibrils for cultivated meat applications. Food-safe biological and physical cross-linking methods using microbial transglutaminase and temperature-controlled water vapor annealing technique were employed to crosslink soy protein amyloid fibrils, resulting in the production of 3D scaffolds. The generated 3D scaffolds had pores with sizes ranging from 50 to 250 μm, porosities of 72-83%, and compressive moduli of 3.8-4.2 kPa, depending on the type of soy protein used in the process (β-conglycinin (7S), glycinin (11S) and soy protein isolate (SPI)). When present with pepsin, these scaffolds can degrade within an hour but remain stable in phosphate-buffered saline for at least 30 days. The soy protein amyloid fibril scaffolds enabled C2C12 mouse skeletal myoblasts proliferate and differentiate without adding cell adhesive proteins or other coatings. The results demonstrate the potential of abundant and inexpensive soy protein amyloid fibrils to be utilized as scaffold materials for cultivated meat in the food industry.
Collapse
Affiliation(s)
- Zhengxun Wei
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Siqing Dai
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Jiayi Huang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Xinyu Hu
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Chengxin Ge
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Yang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ning Xiang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Singh A, Kumar V, Singh SK, Gupta J, Kumar M, Sarma DK, Verma V. Recent advances in bioengineered scaffold for in vitro meat production. Cell Tissue Res 2023; 391:235-247. [PMID: 36526810 PMCID: PMC9758038 DOI: 10.1007/s00441-022-03718-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In vitro meat production via stem cell technology and tissue engineering provides hypothetically elevated resource efficiency which involves the differentiation of muscle cells from pluripotent stem cells. By applying the tissue engineering technique, muscle cells are cultivated and grown onto a scaffold, resulting in the development of muscle tissue. The studies related to in vitro meat production are advancing with a seamless pace, and scientists are trying to develop various approaches to mimic the natural meat. The formulation and fabrication of biodegradable and cost-effective edible scaffold is the key to the successful development of downstream culture and meat production. Non-mammalian biopolymers such as gelatin and alginate or plant-derived proteins namely soy protein and decellularized leaves have been suggested as potential scaffold materials for in vitro meat production. Thus, this article is aimed to furnish recent updates on bioengineered scaffolds, covering their formulation, fabrication, features, and the mode of utilization.
Collapse
Affiliation(s)
- Anshuman Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Vinod Kumar
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Suraj Kumar Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Jalaj Gupta
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| |
Collapse
|
6
|
Kong Y, Jing L, Huang D. Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application. Crit Rev Food Sci Nutr 2022; 64:4966-4976. [PMID: 36384368 DOI: 10.1080/10408398.2022.2147144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
7
|
Xin P, Han S, Huang J, You X, Wu J. Natural Soybean Milk-Derived Bioactive Coatings for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34480-34487. [PMID: 35858126 DOI: 10.1021/acsami.2c09689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Foodborne biomaterials, derived from diets, comprise selfassembled collections of many micro- or nanoscale units with abundant nutrients and active substances. In this study, soybean milk (SBM) was selected as a tissue engineering product for simple and feasible wound repair. SBM is a common drink prepared from soybeans and is rich in soy protein, soy isoflavones, and other bioactive components. Thus, SBM has substantial potential for antioxidation and tissue remodeling. Here, the multifunctional effect of SBM as a bioactive coating for promoting wound healing was studied. The results showed that SBM has good biocompatibility and biological activity. It efficiently scavenges intracellular reactive oxygen species, significantly enhances epithelial cell migration, and improves angiogenesis, thereby accelerating tissue remodeling. The results of animal experiments further confirmed that the SBM-bioinspired coating has promising applications for cutaneous wound regeneration.
Collapse
Affiliation(s)
- Peikun Xin
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuyan Han
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
8
|
Huang K, Huang J, Zhao J, Gu Z, Wu J. Natural lotus root-based scaffolds for bone regeneration. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
10
|
Liu Y, Hu Q, Dong W, Liu S, Zhang H, Gu Y. Alginate/Gelatin-based Hydrogel with Soy Protein/ peptide Powder for 3D Printing Tissue-engineering Scaffolds to Promote Angiogenesis. Macromol Biosci 2022; 22:e2100413. [PMID: 35043585 DOI: 10.1002/mabi.202100413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/12/2022] [Indexed: 11/07/2022]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted broad research interest in biomedical engineering and clinical applications. However, there are two issues need to be solved urgently at present, the development of ink is first pressing thing for 3D printing tissue engineering scaffold, other thing is the promotion of angiogenesis in the scaffold. Therefore, in this work, a gelatin/sodium alginate-based hydrogel with protein-rich was developed, which was prepared by gelatin, sodium alginate, and soy protein/soy peptide powder. The prepared inks exhibited excellent shear-thinning behavior, which contribute to extrusion-based printing; also shown good crosslinking ability by calcium chloride. The macroporous composite scaffolds were printed by 3D printing using our developed ink and the physicochemical properties of the scaffolds were evaluated. Moreover, the cytocompatibility of printed scaffold were characterized by using human umbilical vein epidermal cells (HUVECs), results shown that the scaffolds with soy protein and soy peptide powder can promote cell attach, spread, migration, and proliferation. The further research of chicken embryo allantoic membrane (CAM) assay and animal experiment were carried, and results presented that the scaffold can promote the growth of neo-vessels in the scaffold, which means the developed ink with soy protein and soy peptide powder have great potential for angiogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yakui Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| | - Wenpei Dong
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| | - Yan Gu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
11
|
Mahendiran B, Muthusamy S, Selvakumar R, Rajeswaran N, Sampath S, Jaisankar SN, Krishnakumar GS. Decellularized natural 3D cellulose scaffold derived from Borassus flabellifer (Linn.) as extracellular matrix for tissue engineering applications. Carbohydr Polym 2021; 272:118494. [PMID: 34420749 DOI: 10.1016/j.carbpol.2021.118494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/02/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
In this study, Borassus flabellifer (Linn.) (BF) immature endosperm was decellularized to produce three dimensional (3D) cellulose scaffolds that can support mammalian 3D cell culture. To this regard, we first evaluated the chemical composition, nutritive profile and pharmacological activities of BF endosperm. The results demonstrated that the BF tissue represented a complex concoction of polysaccharides with intrinsic phyto-ingredients which provide excellent pharmacological properties. Furthermore cellulosic scaffolds (CS) obtained from BF was treated with chitosan to produce cellulose-chitosan (CS/CHI) hybrid scaffolds. The comparative investigation on both scaffolds exhibited adequate swelling with controlled porosity and pore-size distribution. The physiochemical characterization showed reduced biodegradation, improved thermal stability and enhanced compressive strength in CS/CHI group. Biological studies reported favorable adhesion and proliferation of fibroblasts with evident cellular penetration and colonization on the both scaffolds. Taken together, plant derived cellulosic scaffolds could be used as an alternative scaffolding material in regenerative medicine.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Narmadha Rajeswaran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | | |
Collapse
|
12
|
Jamalpoor Z, Taromi N. Pre-vascularization of biomimetic 3-D scaffolds via direct co-culture of human umbilical cord derived osteogenic and angiogenic progenitor cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Abstract
The cultured meat market has been growing at an accelerated space since the first creation of cultured meat burger back in 2013. Substantial efforts have been made to reduce costs by eliminating serum in growth media and improving process efficiency by employing bioreactors. In parallel, efforts are also being made on scaffolding innovations to offer better cells proliferation, differentiation and tissue development. So far, scaffolds used in cultured meat research are predominantly collagen and gelatin, which are animal-derived. To align with cell-based meat vision i.e. environment conservation and animal welfare, plant-derived biomaterials for scaffolding are being intensively explored. This paper reviews and discusses the advantages and disadvantages of scaffold materials and potential scaffolding related to scale-up solution for the production of cultured meat.
Collapse
Affiliation(s)
- Jasmine Si Han Seah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
14
|
Abid H, Maqsood Khan S, Iqbal S. A study on optical and thermal properties of natural polymer-based hemicellulose compounds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1472-1488. [PMID: 33977864 DOI: 10.1080/09205063.2021.1925392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Films of husks of Plantango ovate, Cydonia oblonga, Mimosa pudica, Cochlospermum religiosum were prepared, delignified without protein and cellulose content, and their optical properties were evaluated. UV-Vis, FTIR TGA analysis revealed that these natural materials have strong potential in fiber optics, contact lenses and human transplantation infrastructure applications, where there is need of efficient transparency, high thermal stability and good conductivity with minimum light absorption. These natural polymeric films possess significant direct and indirect optical band gap values and better optical conductivity than currently in use synthetic polymeric materials. The Refractive index of these films is also found high in the visible region in comparison to pure or composite metal-doped synthetic films. Urbach energy (Eu), Dispersion energy (Ed), Average oscillation wavelength (λ0), and oscillation strength(S0) of this hemicellulose based natural polymeric films were found to be appropriate for such optical materials which are green, organic, economical and compatible to human systems.
Collapse
Affiliation(s)
- Hina Abid
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Saeed Iqbal
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| |
Collapse
|
15
|
|
16
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
17
|
Huang K, Gu Z, Wu J. Tofu-Incorporated Hydrogels for Potential Bone Regeneration. ACS Biomater Sci Eng 2020; 6:3037-3045. [DOI: 10.1021/acsbiomaterials.9b01997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
18
|
Cell-free scaffold from jellyfish Cassiopea andromeda (Cnidaria; Scyphozoa) for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110748. [PMID: 32279751 DOI: 10.1016/j.msec.2020.110748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
Abstract
Disruption of the continuous cutaneous membrane in the integumentary system is considered a health problem of high cost for any nation. Several attempts have been made for developing skin substitutes in order to restore injured tissue including autologous implants and the use of scaffolds based on synthetic and natural materials. Current biomaterials used for skin tissue repair include several scaffold matrices types, synthetic or natural, absorbable, degradable or non-degradable polymers, porous or dense scaffolds, and cells capsulated in hydrogels or spheroids systems so forth. These materials have advantages and disadvantages and its use will depend on the desired application. Recently, marine organisms such as jellyfish have attracted renewed interest, because both its composition and structure resemble the architecture of human dermic tissue. In this context, the present study aims to generate scaffolds from Cassiopea andromeda (C. andromeda), with application in skin tissue engineering, using a decellularization process. The obtained scaffold was studied by infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC), and scanning electron microscopy (SEM). Crystal violet staining and DNA quantification assessed decellularization effectiveness while the biocompatibility of scaffold was determined with human dermic fibroblasts. Results indicated that the decellularization process reduce native cell population leading to 70% reduction in DNA content. In addition, SEM showed that the macro and microstructure of the collagen I-based scaffold were preserved allowing good adhesion and proliferation of human dermic fibroblasts. The C. andromeda scaffold mimics human skin and therefore represents great potential for skin tissue engineering.
Collapse
|
19
|
Unconventional Tissue Engineering Materials in Disguise. Trends Biotechnol 2020; 38:178-190. [DOI: 10.1016/j.tibtech.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
|
20
|
Zhou Y, Gu Z, Liu J, Huang K, Liu G, Wu J. Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering. Carbohydr Polym 2019; 230:115640. [PMID: 31887895 DOI: 10.1016/j.carbpol.2019.115640] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Bone transplantations are still facing many serious challenges, hydrogel as a new kind of artificial bone substitutes has developed into a promising bone scaffold material. However, it is still a challenge to combine bioactive agents and hydrogel matrix to promote osteoinductivity. Herein, we developed a novel bioactive hydrogel based on arginine-based unsaturated poly (ester amide) (Arg-UPEA) and methacrylated hyaluronic acid (HA-MA) via photo-crosslinking. As the results indicated, we found that the introduction of Arg-UPEA into HA-MA hydrogels could finely modulate their compressive modulus, swelling level and porous structure. Besides, among groups of different feed ratio, groups of 10 % and 15 % of Arg-UPEA content effectively enhanced osteogenic differentiation in osteoblasts when compared with HA-MA hydrogel. Furthermore, better bone regeneration and expression of osteogenesis-related factors in vivo also verified the Arg-UPEA/HA-MA hybrid hydrogels as a promising scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China
| | - Jie Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Jahangirian H, Azizi S, Rafiee-Moghaddam R, Baratvand B, Webster TJ. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019; 9:E619. [PMID: 31627453 PMCID: PMC6843632 DOI: 10.3390/biom9100619] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
In recent decades, regenerative medicine has merited substantial attention from scientific and research communities. One of the essential requirements for this new strategy in medicine is the production of biocompatible and biodegradable scaffolds with desirable geometric structures and mechanical properties. Despite such promise, it appears that regenerative medicine is the last field to embrace green, or environmentally-friendly, processes, as many traditional tissue engineering materials employ toxic solvents and polymers that are clearly not environmentally friendly. Scaffolds fabricated from plant proteins (for example, zein, soy protein, and wheat gluten), possess proper mechanical properties, remarkable biocompatibility and aqueous stability which make them appropriate green biomaterials for regenerative medicine applications. The use of plant-derived proteins in regenerative medicine has been especially inspired by green medicine, which is the use of environmentally friendly materials in medicine. In the current review paper, the literature is reviewed and summarized for the applicability of plant proteins as biopolymer materials for several green regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Susan Azizi
- Applied Science and Technology Education Center of Ahvaz Municipality, Ahvaz 617664343, Iran.
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Bahram Baratvand
- Department of Physiotherapy, Faculty of Health and Sport, Mahsa University, Bandar Saujana Putra, Jenjarum Selangor 42610, Malaysia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Bao Z, Xian C, Yuan Q, Liu G, Wu J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv Healthc Mater 2019; 8:e1900670. [PMID: 31364824 DOI: 10.1002/adhm.201900670] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels based on natural polymers have bright application prospects in biomedical fields due to their outstanding biocompatibility and biodegradability. However, the poor mechanical performances of pure natural polymer-based hydrogels greatly limit their application prospects. Recently, a variety of strategies has been applied to prepare natural polymer-based hydrogels with enhanced mechanical properties, which generally exhibit stiffening, strengthening, and stretchable behaviors. This article summarizes the recent progress of natural polymer-based hydrogels with enhanced mechanical properties. From a structure point of view, four kinds of hydrogel are reviewed; double network hydrogels, nanocomposite hydrogels, click chemistry-based hydrogels, and supramolecular hydrogels. For each typical hydrogel, its preparation, structure, and mechanical performance are introduced in detail. At the end of this article, the current challenges and future prospects of hydrogels based on natural polymers are discussed and it is pointed out that 3D printing may offer a new platform for the development of natural polymer-based hydrogels.
Collapse
Affiliation(s)
- Ziting Bao
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Caihong Xian
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Qijuan Yuan
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Guiting Liu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Jun Wu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 Guangdong P. R. China
| |
Collapse
|
23
|
Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications. Int J Biol Macromol 2019; 136:796-803. [PMID: 31226370 DOI: 10.1016/j.ijbiomac.2019.06.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
The aim of this study was to fabricate a novel bilayer scaffold containing cellulose nanofiber/poly (vinyl) alcohol (CNF/PVA) to evaluate its potential use in skin tissue engineering. Here, the scaffolds were fabricated using a novel one-step freeze-drying technique with two different concentrations of the aforementioned polymers. FE-SEM analysis indicated that the fabricated scaffolds had interconnected pores with two defined pore size in each layer of the bilayer scaffolds that can recapitulate the two layers of the dermis and epidermis of the skin. Lower concentration of polymers causes higher porosity with larger pore size and increased water uptake and decreased mechanical strength. FTIR proved the presence of functional groups and strong hydrogen bonding between the molecules of CNF/PVA and the efficient crosslinking. The MTT assay showed that these nanofibrous scaffolds meet the requirement as a biocompatible material for skin repair. Here, for the first time, we fabricated bilayer scaffold using a novel one-step freeze-drying technique only by controlling the polymer concentration with spending less time and energy.
Collapse
|
24
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|