1
|
Gül S, Açıkgöz E, Çakır M, Menges N. Design and Synthesis of ESIPT-Based Imidazole Derivatives for Cell Imaging. ACS OMEGA 2024; 9:24291-24298. [PMID: 38882084 PMCID: PMC11171098 DOI: 10.1021/acsomega.3c09822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-based fluorescent molecules offer several exciting applications and are utilized most frequently as a cell imaging agent. Because of this, four distinct imidazole derivatives with ESIPT emission have been synthesized, and their fluorescence characteristics have been assessed in a variety of settings. Measurements using fluorescence spectroscopy have shown a promising candidate for cell staining, and potential candidate was specifically investigated for cell imaging uses in HT-29, MDA-MB-231, and HaCaT. Cytotoxicity of candidate molecule (1d) was analyzed using HT-29 and HaCaT cell lines, and at a dosage of 160 μM, HT-29 and HaCaT cell lines showed no signs of important cell toxicity. When spectroscopically measured, compound 1d showed no fluorescence ability in phosphate-buffered saline (PBS) solution. However, after 8 h of incubation in several cell lines, excellent fluorescence characteristics were seen in the green and red filters.
Collapse
Affiliation(s)
- Sergen Gül
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Türkiye
| | - Eda Açıkgöz
- School of Medicine, Van Yüzüncü Yil University, 65080 Van, Türkiye
| | - Mustafa Çakır
- School of Medicine, Van Yüzüncü Yil University, 65080 Van, Türkiye
| | - Nurettin Menges
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Türkiye
- Faculty of Pharmacy, Van Yüzüncü Yil University, 65080 Van, Türkiye
| |
Collapse
|
2
|
Al‐Kelani M, Buthelezi N. Advancements in medical research: Exploring Fourier Transform Infrared (FTIR) spectroscopy for tissue, cell, and hair sample analysis. Skin Res Technol 2024; 30:e13733. [PMID: 38887131 PMCID: PMC11182784 DOI: 10.1111/srt.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Fourier Transform Infrared (FTIR) spectroscopy has emerged as a powerful analytical tool in medical research, offering non-invasive and precise examination of the molecular composition of biological samples. The primary objective of this review is to underscore the benefits of FTIR spectroscopy in medicinal research, emphasizing its ability to delineate molecular fingerprints and assist in the identification of biochemical structures and key peaks in biological samples. METHODS This review comprehensively explores the diverse applications of FTIR spectroscopy in medical investigations, with a specific focus on its utility in analyzing tissue, cells, and hair samples. Various sources, including Google Scholar, PubMed, WorledCat and Scopus, were utilized to conduct this comprehensive literature review. RESULTS Recent advancements showcase the versatility of FTIR spectroscopy in elucidating cellular and molecular processes, facilitating disease diagnostics, and enabling treatment monitoring. Notably, FTIR spectroscopy has found significant utility in clinical assessment, particularly in screening counterfeit medicines, owing to its user-friendly operation and minimal sample preparation requirements. Furthermore, customs officials can leverage this technique for preliminary analysis of suspicious samples. CONCLUSION This review aims to bridge a gap in the literature and serve as a valuable resource for future research endeavors in FTIR spectroscopy within the medical domain. Additionally, it presents fundamental concepts of FTIR spectroscopy and spectral data interpretation, highlighting its utility as a tool for molecular analysis using Mid-Infrared (MIR) radiation.
Collapse
Affiliation(s)
- Madeha Al‐Kelani
- Hair and Skin Research LaboratoryDivision of DermatologyGroote Schuur HospitalCape TownSouth Africa
- Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Ntandoyenkosi Buthelezi
- Hair and Skin Research LaboratoryDivision of DermatologyGroote Schuur HospitalCape TownSouth Africa
- Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
3
|
Güler G, Acikgoz E, Mukhtarova G, Oktem G. Biomolecular fingerprints of the effect of zoledronic acid on prostate cancer stem cells: Comparison of 2D and 3D cell culture models. Arch Biochem Biophys 2024; 753:109920. [PMID: 38307315 DOI: 10.1016/j.abb.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Revealing the potential of candidate drugs against different cancer types without disrupting normal cells depends on the drug mode of action. In the current study, the drug response of prostate cancer stem cells (PCSCs) to zoledronic acid (ZOL) grown in two-dimensional (2D) and three-dimensional (3D) culture systems was compared using Fourier transform-infrared (FT-IR) spectroscopy which is a vibrational spectroscopic technique, supporting by biochemical assays and imaging techniques. Based on our data, in 2D cell culture conditions, the ZOL treatment of PCSCs isolated according to both C133 and CD44 cell surface properties induced early/late apoptosis and suppressed migration ability. The CD133 gene expression and protein levels were altered, depending on culture systems. CD133 expression was significantly reduced in 2D cells upon ZOL treatment. FT-IR data revealed that the integrity, fluidity, and ordering/disordering states of the cell membrane and nucleic acid content were altered in both 2D and 3D cells after ZOL treatment. Regular protein structures decrease in 2D cells while glycogen and protein contents increase in 3D cells, indicating a more pronounced cytotoxic effect of ZOL for 2D cells. Untreated 3D PCSCs exhibited an even different spectral profile associated with IR signals of lipids, proteins, nucleic acids, and glycogen in comparison to untreated 2D cells. Our study revealed significant differences in the drug response and cellular constituents between 2D and 3D cells. Exploring molecular targets and/or drug-action mechanisms is significant in cancer treatment approaches; thus, FT-IR spectroscopy can be successfully applied as a novel drug-screening method in clinical research.
Collapse
Affiliation(s)
- Günnur Güler
- Biophysics Laboratory, Department of Physics, Izmir Institute of Technology, Urla, 35433, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Günel Mukhtarova
- Department of Basic Oncology, Faculty of Medicine, Ege University, 35550, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
4
|
Marques CMS, Pedroso JT, Bhattacharjee T, Pupin B, Pinto JG, Ferreira-Strixino J, Sakane KK. Fourier Transform Infrared Spectroscopy (FT-IR) of Pseudomonas aeruginosa post photodynamic therapy with Curcumin in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121916. [PMID: 36201868 DOI: 10.1016/j.saa.2022.121916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alternative therapies against pathogens are under intense investigation because of their increasing resistance to antibiotics. Photodynamic therapy (PDT) is one such alternative that has shown promising results. However, for the widespread use of PDT, it is essential to decipher underlying mechanisms, so as to improve PDT's therapeutic applications. Because of this, we have studied biochemical changes in pathogen Pseudomonas aeruginosa, a medically important bacteria that has developed antibiotic resistance, after PDT with curcumin photosensitizer. Results show a drastic decrease in α-helix protein and increased disordered and β-sheet secondary structure proteins in P. Aeruginosa post-PDT compared to control. Interestingly, these biochemical changes differ from PDT of pathogens Leishmania braziliensis and Leishmania major with photosensitizer methylene blue. This observation underlines the need for extensive studies on PDT of different pathogens to understand mechanisms of action and develop better PDT strategies.
Collapse
Affiliation(s)
- Camila Monteiro Santos Marques
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| | - Juliana Teixeira Pedroso
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin 9016, New Zealand
| | - Breno Pupin
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBios) - Research and Development Institute - R&DI, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000, São José dos Campos, São Paulo, Brazil.
| | - Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000, São Jose dos Campos, São Paulo, Brazil
| |
Collapse
|
5
|
Deciphering the Biochemical Similarities and Differences Among Human Neuroglial Cells and Glioma Cells Using Fourier Transform Infrared Spectroscopy. World Neurosurg 2022; 168:e562-e569. [DOI: 10.1016/j.wneu.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
|
6
|
Lugtu EJ, Ramos DB, Agpalza AJ, Cabral EA, Carandang RP, Dee JE, Martinez A, Jose JE, Santillan A, Bangaoil R, Albano PM, Tomas RC. Artificial neural network in the discrimination of lung cancer based on infrared spectroscopy. PLoS One 2022; 17:e0268329. [PMID: 35551276 PMCID: PMC9098097 DOI: 10.1371/journal.pone.0268329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Given the increasing prevalence of lung cancer worldwide, an auxiliary diagnostic method is needed alongside the microscopic examination of biopsy samples, which is dependent on the skills and experience of pathologists. Thus, this study aimed to advance lung cancer diagnosis by developing five (5) artificial neural network (NN) models that can discriminate malignant from benign samples based on infrared spectral data of lung tumors (n = 122; 56 malignant, 66 benign). NNs were benchmarked with classical machine learning (CML) models. Stratified 10-fold cross-validation was performed to evaluate the NN models, and the performance metrics-area under the curve (AUC), accuracy (ACC) positive predictive value (PPV), negative predictive value (NPV), specificity rate (SR), and recall rate (RR)-were averaged for comparison. All NNs were able to outperform the CML models, however, support vector machine is relatively comparable to NNs. Among the NNs, CNN performed best with an AUC of 92.28% ± 7.36%, ACC of 98.45% ± 1.72%, PPV of 96.62% ± 2.30%, NPV of 90.50% ± 11.92%, SR of 96.01% ± 3.09%, and RR of 89.21% ± 12.93%. In conclusion, NNs can be potentially used as a computational tool in lung cancer diagnosis based on infrared spectroscopy of lung tissues.
Collapse
Affiliation(s)
- Eiron John Lugtu
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Denise Bernadette Ramos
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Alliah Jen Agpalza
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Erika Antoinette Cabral
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Rian Paolo Carandang
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Jennica Elia Dee
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Angelica Martinez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Julius Eleazar Jose
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Abegail Santillan
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
| | - Ruth Bangaoil
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
- University of Santo Tomas Hospital, Manila, Philippines
| | - Pia Marie Albano
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Rock Christian Tomas
- Department of Electrical Engineering, University of the Philippines Los Baños, Laguna, Philippines
| |
Collapse
|
7
|
Peng W, Chen S, Kong D, Zhou X, Lu X, Chang C. Grade classification of human glioma using a convolutional neural network based on mid-infrared spectroscopy mapping. JOURNAL OF BIOPHOTONICS 2022; 15:e202100313. [PMID: 34931464 DOI: 10.1002/jbio.202100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
This study proposes a convolutional neural network (CNN)-based computer-aided diagnosis (CAD) system for the grade classification of human glioma by using mid-infrared (MIR) spectroscopic mappings. Through data augmentation of pixels recombination, the mappings in the training set increased almost 161 times relative to the original mappings. The pixels of the recombined mappings in the training set came from all of the one-dimensional (1D) vibrational spectroscopy of 62 (almost 80% of all 77 patients) patients at specific bands. Compared with the performance of the CNN-CAD system based on the 1D vibrational spectroscopy, we found that the mean diagnostic accuracy of the recombined MIR spectroscopic mappings at peaks of 2917 cm-1 , 1539 cm-1 and 1234 cm-1 on the test set performed higher and the model also had more stable patterns. This research demonstrates that two-dimensional MIR mapping at a single frequency can be used by the CNN-CAD system for diagnosis and the research also gives a prompt that the mapping collection process can be replaced by a single-frequency IR imaging system, which is cheaper and more portable than a Fourier transform infrared microscopy and thus may be widely utilized in hospitals to provide meaningful assistance for pathologists in clinics.
Collapse
Affiliation(s)
- Wenyu Peng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Shuo Chen
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, China
| | - Chao Chang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| |
Collapse
|
8
|
Ozdil B, Calik-Kocaturk D, Altunayar-Unsalan C, Acikgoz E, Gorgulu V, Uysal A, Unsalan O, Aktug H. Spectroscopic and microscopic comparisons of cell topology and chemistry analysis of mouse embryonic stem cell, somatic cell and cancer cell. Acta Histochem 2021; 123:151763. [PMID: 34333240 DOI: 10.1016/j.acthis.2021.151763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
While embryonic stem cells and cancer cells are known to have many similarities in signalling pathways, healthy somatic cells are known to be different in many ways. Characterization of embryonic stem cell is crucial for cancer development and cancer recurrence due to the shared signalling pathways and life course with cancer initiator and cancer stem cells. Since embryonic stem cells are the sources of the somatic and cancer cells, it is necessary to reveal the relevance between them. The past decade has seen the importance of interdisciplinary studies and it is obvious that the reflection of the physical/chemical phenomena occurring on the cell biology has attracted much more attention. For this reason, the aim of this study is to elementally and topologically characterize the mouse embryonic stem cells, mouse lung squamous cancer cells, and mouse skin fibroblast cells by using Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) supported with Electron Dispersive Spectroscopy (EDS) techniques in a complementary way. Our AFM findings revealed that roughness data of the mouse embryonic stem cells and cancer cells were similar and somatic cells were found to be statistically different from these two cell types. However, based on both XPS and SEM-EDS results, surface elemental ratios vary in mouse embryonic stem cells, cancer cells and somatic cells. Our results showed that these complementary spectroscopic and microscopic techniques used in this work are very effective in cancer and stem cell characterization and have the potential to gather more detailed information on relevant biological samples.
Collapse
|
9
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
10
|
Li Y, Chen Y, Zhang H, Lam CWK, Li Z, Wang C, Zhao Y, Zhang W, Jiang Z. Immobilization of cell membrane onto a glucose-Zn-based porous coordination polymer and its application to rapid screening of potentially active compounds from Vaccinium corymbosum L. leaves. Mikrochim Acta 2020; 187:630. [PMID: 33125573 DOI: 10.1007/s00604-020-04612-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
A novel glucose-Zn-based porous coordination polymer (PCP) was selected as a carrier of cell membranes (CMs) to fabricate CM-coated PCP (CMPCP) for rapid screening of potentially active compounds from natural products. The cell disruption and the amount of maximum CMs adsorbed on PCP were optimized according to the amount of immobilized protein. This new kind of matrix exhibited good reproducibility and stability, and was applied for fishing potentially active compounds from the extracts of Vaccinium corymbosum L. leaves (VCL). Using LC-MS/MS, chlorogenic acid and quercetin were identified as the potentially active compounds through comparison of normal and non-alcoholic fatty liver disease (NAFLD)-modeled CMPCP. Our results suggested that the proposed approach based on CMPCP was environmentally friendly, cost-effective, and convenient in terms of green porous material, stable protein loading capacity, and accessible operation process. The developed method could provide a promising platform for efficient drug discovery from natural product resources.Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yanli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
11
|
GÜLER G, GÜVEN Ü, AÇIKGÖZ E, ÖKTEM G. IR spektroskopi kullanılarak in vitro meme kanser kök hücrelerinin araştırılması. EGE TIP DERGISI 2020. [DOI: 10.19161/etd.790394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Gieroba B, Arczewska M, Sławińska-Brych A, Rzeski W, Stepulak A, Gagoś M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118112. [PMID: 32014658 DOI: 10.1016/j.saa.2020.118112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Fourier Transform Infrared spectroscopy was applied to detect in vitro cell death induced in prostate (PC-3) and breast (T47D) cancer cell lines treated with xanthohumol (XN). After incubation of the cancer cells with XN, specific spectral shifts in the infrared spectra arising from selected cellular components were identified that reflected biochemical changes characteristic for apoptosis and necrosis. Detailed analysis of specific absorbance intensity ratios revealed the compositional changes in the secondary structure of proteins and membrane lipids. In this study, for the first time we examined the changes in these molecular components and linked them to deduce the involvement of molecular mechanisms in the XN-induced death of the selected cancer cells. We showed that XN concentration-dependent changes were attributed to phospholipid ester carbonyl groups, especially in the case of T47D cells, suggesting that XN acts as an inhibitor of cell proliferation. Additionally, we observed distinct changes in the region assigned to the absorption of DNA, which were correlated with a specific marker of cell death and dependent on the XN dose and the type of cancer cells. The microscopic observation and flow cytometry analysis revealed that the decrease in cancer cell viability was mainly related to the induction of necrotic cell death. Moreover, the T47D cells were slightly more sensitive to XN than the PC-3 cells. Considering the results obtained, it can be assumed that apoptosis and necrosis induced by XN may contribute to the anti-proliferative and cytotoxic properties of this flavonoid against cancer cell lines PC-3 and T47D.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Wojciech Rzeski
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
13
|
Rodrigues AS, Pereira SL, Ramalho-Santos J. Stem metabolism: Insights from oncometabolism and vice versa. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165760. [PMID: 32151634 DOI: 10.1016/j.bbadis.2020.165760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
14
|
Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li L, Wu J, Weng S, Yang L, Wang H, Xu Y, Shen K. Fourier Transform Infrared Spectroscopy Monitoring of Dihydroartemisinin-Induced Growth Inhibition in Ovarian Cancer Cells and Normal Ovarian Surface Epithelial Cells. Cancer Manag Res 2020; 12:653-661. [PMID: 32099462 PMCID: PMC6996210 DOI: 10.2147/cmar.s240285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/19/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal of gynecological malignancies. Dihydroartemisinin (DHA), a derivative of artemisinin (ARS), has profound effects against human tumors. The aim of this study was to provide a convenient, cost-efficient technique, Fourier transform infrared (FTIR) spectroscopy, to monitor and evaluate responses to DHA-induced growth inhibition of ovarian cancer cells. Methods Cell growth and viability and the 50% inhibitory concentration (IC50) of DHA were assessed by the MTT assay. FTIR spectroscopy was used to monitor cells following DHA treatment, and data were analyzed by OMNIC 8.0 software. Results DHA can decrease the viability of ovarian cancer cells and normal cells, but cancer cells were more sensitive to this drug than normal cells. Spectral differences were observed between cells with or without DHA treatment. In particular, an increase in the amount of lipids and nucleic acids was observed. The band intensity ratio of 1454/1400, and the intensity of the band 1741 cm−1 increased, indicating stronger absorption after DHA treatment. Moreover, the differences were larger for the cell lines that were more sensitive to DHA. Conclusion The spectral features provided information about important molecular characteristics of the cells in response to chemicals. These findings demonstrated the possible use of FTIR spectroscopy to evaluate DHA-induced growth inhibition effects in ovarian cancer cells and provided a promising new tool for monitoring cell growth and the effects of antitumor drugs in the clinic in the future.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Shifu Weng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Huizi Wang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
16
|
Ozdil B, Güler G, Acikgoz E, Kocaturk DC, Aktug H. The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem 2019; 121:269-283. [PMID: 31168838 DOI: 10.1002/jcb.29159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. In the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. In conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs' behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Günnur Güler
- Department of Biomedical Engineering, Izmir University of Economics, Izmir, Turkey.,Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Duygu Calik Kocaturk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers (Basel) 2019; 11:cancers11040576. [PMID: 31022903 PMCID: PMC6521097 DOI: 10.3390/cancers11040576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite overall progress in improving cancer treatments, the complete response of mantle cell lymphoma (MCL) is still limited due to the inevitable development of drug resistance. More than half of patients did not attain response to bortezomib (BTZ), the approved treatment for relapsed or refractory MCL. Understanding how MCL cells acquire BTZ resistance at the molecular level may be a key to the long-term management of MCL patients and new therapeutic strategies. We established a series of de novo BTZ-resistant human MCL-derived cells with approximately 15- to 60-fold less sensitivity than those of parental cells. Using gene expression profiling, we discovered that putative cancer-related genes involved in drug resistance and cell survival tested were mostly downregulated, likely due to global DNA hypermethylation. Significant information on dysregulated lipid metabolism was obtained from synchrotron-based Fourier transform infrared (FTIR) spectroscopy of single cells. We demonstrated for the first time an upregulation of CD36 in highly BTZ-resistant cells in accordance with an increase in their lipid accumulation. Ectopic expression of CD36 causes an increase in lipid droplets and renders BTZ resistance to various human MCL cells. By contrast, inhibition of CD36 by neutralizing antibody strongly enhances BTZ sensitivity, particularly in CD36-overexpressing cells and de novo BTZ-resistant cells. Together, our findings highlight the potential application of CD36 inhibition for BTZ sensitization and suggest the use of FTIR spectroscopy as a promising technique in cancer research.
Collapse
|
18
|
Biochemical detection of fatal hypothermia and hyperthermia in affected rat hypothalamus tissues by Fourier transform infrared spectroscopy. Biosci Rep 2019; 39:BSR20181633. [PMID: 30824563 PMCID: PMC6418404 DOI: 10.1042/bsr20181633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
It is difficult to determinate the cause of death from exposure to fatal hypothermia and hyperthermia in forensic casework. Here, we present a state-of-the-art study that employs Fourier-transform infrared (FTIR) spectroscopy to investigate the hypothalamus tissues of fatal hypothermic, fatal hyperthermic and normothermic rats to determine forensically significant biomarkers related to fatal hypothermia and hyperthermia. Our results revealed that the spectral variations in the lipid, protein, carbohydrate and nucleic acid components are highly different for hypothalamuses after exposure to fatal hypothermic, fatal hyperthermic and normothermic conditions. In comparison with the normothermia group, the fatal hypothermia and hyperthermia groups contained higher total lipid amounts but were lower in unsaturated lipids. Additionally, their cell membranes were found to have less motional freedom. Among these three groups, the fatal hyperthermia group contained the lowest total proteins and carbohydrates and the highest aggregated and dysfunctional proteins, while the fatal hypothermia group contained the highest level of nucleic acids. In conclusion, this study demonstrates that FTIR spectroscopy has the potential to become a reliable method for the biochemical characterization of fatal hypothermia and hyperthermia hypothalamus tissues, and this could be used as a postmortem diagnostic feature in fatal hypothermia and hyperthermia deaths.
Collapse
|
19
|
Acikgoz E, Güler G, Camlar M, Oktem G, Aktug H. Glycogen synthase kinase-3 inhibition in glioblastoma multiforme cells induces apoptosis, cell cycle arrest and changing biomolecular structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:150-164. [PMID: 30388586 DOI: 10.1016/j.saa.2018.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive primary human brain tumors. The regulatory pathways of apoptosis are altered in GBMs, leading to a survival advantage of the tumor cells. Thus, identification of target molecules, which are effective in triggering of the cell death mechanisms in GBM, is an essential strategy for therapeutic purposes. Glycogen synthase kinase-3 (GSK-3) plays an important role in apoptosis, proliferation and cell cycle. This study focused on the effect of GSK-3 inhibitor IX in the GBM cells. Apoptosis induction was determined by Annexin-V assay, multicaspase activity and immunofluorescence analyses. Concentration-dependent effects of GSK-3 inhibitor IX on the cell cycle were also evaluated. Moreover, the effect of GSK inhibitor on the cellular biomolecules was assessed by using ATR-FTIR spectroscopy. Our assay results indicated that GSK-3 inhibitor IX induces apoptosis, resulting in a significant increase in the expression of caspase-3 and caspase-8 proteins. Cell cycle analyses revealed that GSK-3 inhibitor IX leads to dose-dependent G2/M-phase cell cycle arrest. Based on the FTIR data, treatment of GBM cells causes dysregulation in the carbohydrate metabolism and induces apoptotic cell death which was characterized by the spectral alterations in nucleic acids, an increment in the lipid amount with disordering state and compositional changes in the cellular proteins. These findings suggest that GSK-3 inhibitor IX exhibits anti-cancer effects by inducing apoptosis and changing biomolecular structure of membrane lipids, carbohydrates, nucleic acids and proteins, and thus, may be further evaluated as a potential effective candidate agent for the GBM combination therapies.
Collapse
Affiliation(s)
- Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100 Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, 65080 Van, Turkey.
| | - Günnur Güler
- Center for Drug Research & Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100 Izmir, Turkey.
| | - Mahmut Camlar
- Department of Neurosurgery, Sağlık Bilimleri University Izmir Tepecik Education and Research Hospital, Izmir 35100, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
20
|
Güler G, Guven U, Oktem G. Characterization of CD133 +/CD44 + human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019; 144:2138-2149. [PMID: 30742170 DOI: 10.1039/c9an00093c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current cancer treatments destroy the tumor mass but cannot prevent the recurrence of cancer. The heterogeneous structure of the tumor mass includes cancer stem cells that are responsible for tumor relapse, treatment resistance, invasion and metastasis. The biology of these cells is still not fully understood; therefore, effective treatments cannot be developed sufficiently. Herein, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, combined with unsupervised multivariate analysis, was applied to prostate cancer stem cells (CSCs), non-stem cancer cells (non-CSCs) and normal prostate epithelial cells to elucidate the molecular mechanisms and features of CSCs, which are crucial to improving the target specific therapies. This work revealed the spectral differences in the cellular mechanisms and biochemical structures among three different cell types. Particularly, prostate CSCs exhibit differences in the lipid composition and dynamics when compared to other cell types. CSCs also harbor pronounced differences in their major cellular macromolecules, including differences in the protein amount and content (mainly α-helices), the abundance of nucleic acids (DNA/RNA), altered nucleic acid conformation and carbohydrate composition. Interestingly, macromolecules containing the C[double bond, length as m-dash]O groups and negatively charged molecules having the COO- groups are abundant in prostate CSCs in comparison to prostate non-CSCs and normal prostate cells. Overall, this study demonstrates the potential use of ATR-FTIR spectroscopy as a powerful tool to obtain new insights into the understanding of the CSC features, which may provide new strategies for cancer treatment by selectively targeting the CSCs.
Collapse
Affiliation(s)
- Günnur Güler
- Center for Drug Research & Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey. and Department of Physics, Science Faculty, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ummu Guven
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey. and Department of Embryology and Histology, School of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|