1
|
Dasgupta S, Ray K. Plasmon-enhanced fluorescence for biophotonics and bio-analytical applications. Front Chem 2024; 12:1407561. [PMID: 38988729 PMCID: PMC11233826 DOI: 10.3389/fchem.2024.1407561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fluorescence spectroscopy serves as an ultrasensitive sophisticated tool where background noises which serve as a major impediment to the detection of the desired signals can be safely avoided for detections down to the single-molecule levels. One such way of bypassing background noise is plasmon-enhanced fluorescence (PEF), where the interactions of fluorophores at the surface of metals or plasmonic nanoparticles are probed. The underlying condition is a significant spectral overlap between the localized surface plasmon resonance (LSPR) of the nanoparticle and the absorption or emission spectra of the fluorophore. The rationale being the coupling of the excited state of the fluorophore with the localized surface plasmon leads to an augmented emission, owing to local field enhancement. It is manifested in enhanced quantum yields concurrent with a decrease in fluorescence lifetimes, owing to an increase in radiative rate constants. This improvement in detection provided by PEF allows a significant scope of expansion in the domain of weakly emitting fluorophores which otherwise would have remained unperceivable. The concept of coupling of weak emitters with plasmons can bypass the problems of photobleaching, opening up avenues of imaging with significantly higher sensitivity and improved resolution. Furthermore, amplification of the emission signal by the coupling of free electrons of the metal nanoparticles with the electrons of the fluorophore provides ample opportunities for achieving lower detection limits that are involved in biological imaging and molecular sensing. One avenue that has attracted significant attraction in the last few years is the fast, label-free detection of bio-analytes under physiological conditions using plasmonic nanoparticles for point-of-care analysis. This review focusses on the applications of plasmonic nanomaterials in the field of biosensing, imaging with a brief introduction on the different aspects of LSPR and fabrication techniques.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Qin J, Wang W, Gao L, Yao SQ. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem Sci 2022; 13:2857-2876. [PMID: 35382472 PMCID: PMC8905799 DOI: 10.1039/d1sc06269g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
With the deepening of our understanding in life science, molecular biology, nanotechnology, optics, electrochemistry and other areas, an increasing number of biosensor design strategies have emerged in recent years, capable of providing potential practical applications for point-of-care (POC) diagnosis in various human diseases. Compared to conventional biosensors, the latest POC biosensor research aims at improving sensor precision, cost-effectiveness and time-consumption, as well as the development of versatile detection strategies to achieve multiplexed analyte detection in a single device and enable rapid diagnosis and high-throughput screening. In this review, various intriguing strategies in the recognition and transduction of POC (from 2018 to 2021) are described in light of recent advances in CRISPR technology, electrochemical biosensing, and optical- or spectra-based biosensing. From the perspective of promoting emerging bioanalytical tools into practical POC detecting and diagnostic applications, we have summarized key advances made in this field in recent years and presented our own perspectives on future POC development and challenges.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| | - Wei Wang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| |
Collapse
|
3
|
Gauglitz G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 2020; 412:3317-3349. [PMID: 32313998 PMCID: PMC7214504 DOI: 10.1007/s00216-020-02581-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Direct optical detection has proven to be a highly interesting tool in biomolecular interaction analysis to be used in drug discovery, ligand/receptor interactions, environmental analysis, clinical diagnostics, screening of large data volumes in immunology, cancer therapy, or personalized medicine. In this review, the fundamental optical principles and applications are reviewed. Devices are based on concepts such as refractometry, evanescent field, waveguides modes, reflectometry, resonance and/or interference. They are realized in ring resonators; prism couplers; surface plasmon resonance; resonant mirror; Bragg grating; grating couplers; photonic crystals, Mach-Zehnder, Young, Hartman interferometers; backscattering; ellipsometry; or reflectance interferometry. The physical theories of various optical principles have already been reviewed in detail elsewhere and are therefore only cited. This review provides an overall survey on the application of these methods in direct optical biosensing. The "historical" development of the main principles is given to understand the various, and sometimes only slightly modified variations published as "new" methods or the use of a new acronym and commercialization by different companies. Improvement of optics is only one way to increase the quality of biosensors. Additional essential aspects are the surface modification of transducers, immobilization strategies, selection of recognition elements, the influence of non-specific interaction, selectivity, and sensitivity. Furthermore, papers use for reporting minimal amounts of detectable analyte terms such as value of mass, moles, grams, or mol/L which are difficult to compare. Both these essential aspects (i.e., biochemistry and the presentation of LOD values) can be discussed only in brief (but references are provided) in order to prevent the paper from becoming too long. The review will concentrate on a comparison of the optical methods, their application, and the resulting bioanalytical quality.
Collapse
Affiliation(s)
- Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Maeno K, Patel BR, Endo T, Kerman K. Angle-Sensitive Photonic Crystals for Simultaneous Detection and Photocatalytic Degradation of Hazardous Diazo Compounds. MICROMACHINES 2020; 11:E93. [PMID: 31952227 PMCID: PMC7020205 DOI: 10.3390/mi11010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/16/2022]
Abstract
Congo Red (CR) and Amido Black 10B (AB-10B) are anionic diazo dyes, which are metabolized to produce a bioaccumulative and persistent carcinogen, benzidine. In this regard, an angle sensitive sensor composed of photonic crystal supported photocatalyst was fabricated for the simultaneous detection and photocatalytic degradation of diazo dyes from aqueous solutions. Reflectance spectroscopy was used in the detection of CR and AB-10B, which was based on the emergence of the incident angle dependent reflection peaks from the TiO2 coated two-dimensional photonic crystal (2D-PhC) surfaces and their subsequent quenching due to the presence of dye molecules whose absorbance peak intensity overlapped the reflection peak intensity of TiO2 at the respective angle. Interestingly, ultraviolet (UV) mediated photocatalytic degradation of CR and AB-10B was achieved using the same TiO2 coated 2D-PhC surfaces. 2D-PhC underneath the TiO2 layer was able to confine and localize the light on the TiO2 coated 2D-PhC surface, which enhanced the light absorption by dye molecules on the TiO2 surface and the photocatalytic efficiency in the degradation of CR and AB-10B. Finally, this proof-of-concept study demonstrated the fabrication of copolymer film based photonic crystal supported photocatalytic device, which can be used for developing miniaturized sensors competent in on-field detection and degradation of pollutants.
Collapse
Affiliation(s)
- Kenichi Maeno
- Department of Applied Chemistry, Osaka Prefecture University, 1-1, Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Bhargav R. Patel
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Tatsuro Endo
- Department of Applied Chemistry, Osaka Prefecture University, 1-1, Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
5
|
Qin J, Li X, Cao L, Du S, Wang W, Yao SQ. Competition-Based Universal Photonic Crystal Biosensors by Using Antibody–Antigen Interaction. J Am Chem Soc 2019; 142:417-423. [DOI: 10.1021/jacs.9b11116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Xueqiang Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
- Aramco Research Center-Boston, Aramco Services Company, Cambridge, Massachusetts 02139, United States
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
6
|
Zhu Y, Wang J, Zhu X, Wang J, Zhou L, Li J, Mei T, Qian J, Wei L, Wang X. Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst 2019; 144:5802-5809. [PMID: 31465037 DOI: 10.1039/c9an01287g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A dual-mode sensing platform, involving fluorescence and reflectance modes, has been demonstrated for highly sensitive and selective detection of solvents and metal ions based on carbon dot-based inverse opal hydrogels (CD-IOHs). In this work, CD-IOHs have been first synthesized via the typical templating technique. Two kinds of CDs, including solvent and Cu(ii) ion sensitive CDs, have been incorporated into the matrix of IOHs during the co-polymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA). The CD-IOHs not only appear green under daylight but also exhibit stable photoluminescence (PL) under UV light owing to the stop-band effect of photonic crystals and the quantum effect of CDs, respectively. By using these two optical phenomena, for solvent sensing, the CD-IOHs change their colors from green, yellow, and red to a semitransparent state and show good linear sensing with the ethanol content varying from 0 to 45% in reflectance mode, while their PL intensities exhibit a nonlinear detection trend: first an increase and then a decrease with the ethanol content in fluorescence mode. Remarkably, as for metal ion sensing, the CD-IOHs have high selectivity for Cu(ii) ions via the specific PL quenching effect of Cu(ii) ion sensitive CDs. Furthermore, the CD-IOHs show good linear detection in both modes and a wide linear detection range from 0.1 μM to 7 mM. Thus, high selectivity, colorimetric detection, a broad linear detection range, and dual-mode sensing can be realized using the CD-IOHs.
Collapse
Affiliation(s)
- Yuhua Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xiang Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jun Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lijie Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jingwen Qian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lai Wei
- Wuhan Drug Solubilization and Delivery Technology Research Center, School of Environment and Biochemical Engineering, Wuhan Vocational College of Software and Engineering, Wuhan 430205, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|