1
|
Pinto de Sousa B, Fateixa S, Trindade T. Surface-Enhanced Raman Scattering Using 2D Materials. Chemistry 2024; 30:e202303658. [PMID: 38530022 DOI: 10.1002/chem.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The use of surface-enhanced Raman scattering (SERS) as a technique for detecting small amounts of (bio)chemical analytes has become increasingly popular in various fields. While gold and silver nanostructures have been extensively studied as SERS substrates, the availability of other types of substrates is currently expanding the applications of this spectroscopic method. Recently, researchers have begun exploring two-dimensional (2D) materials (e. g., graphene-like nanostructures) as substrates for SERS analysis. These materials offer unique optical properties, a well-defined structure, and the ability to modify their surface chemistry. As a contribution to advance this field, this concept article highlights the significance of understanding the chemical mechanism that underlies the experimental Raman spectra of chemisorbed molecules onto 2D materials' surfaces. Therefore, the article discusses recent advancements in fabricating substrates using 2D layered materials and the synergic effects of using their metallic composites for SERS applications. Additionally, it provides a new perspective on using Raman imaging in developing 2D materials as analytical platforms for Raman spectroscopy, an exciting emerging research area with significant potential.
Collapse
Affiliation(s)
- Beatriz Pinto de Sousa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Annušová A, Labudová M, Truchan D, Hegedűšová V, Švajdlenková H, Mičušík M, Kotlár M, Pribusová Slušná L, Hulman M, Salehtash F, Kálosi A, Csáderová L, Švastová E, Šiffalovič P, Jergel M, Pastoreková S, Majková E. Selective Tumor Hypoxia Targeting Using M75 Antibody Conjugated Photothermally Active MoO x Nanoparticles. ACS OMEGA 2023; 8:44497-44513. [PMID: 38046334 PMCID: PMC10688043 DOI: 10.1021/acsomega.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.
Collapse
Affiliation(s)
- Adriana Annušová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Martina Labudová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Daniel Truchan
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Université
Sorbonne Paris Nord, Université Paris
Cité, Laboratory for Vascular Translational Science, LVTS,
INSERM, UMR 1148, Bobigny F-93017, France
| | - Veronika Hegedűšová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Helena Švajdlenková
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Mário Kotlár
- Centre
for Nanodiagnostics of Materials, Slovak
University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Lenka Pribusová Slušná
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Martin Hulman
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Farnoush Salehtash
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Anna Kálosi
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Lucia Csáderová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eliška Švastová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Matej Jergel
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Silvia Pastoreková
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eva Majková
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| |
Collapse
|
3
|
Chaloupková Z, Žárská L, Belza J, Poláková K. Label-free detection and mapping of graphene oxide in single HeLa cells based on MCR-Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5582-5588. [PMID: 37917034 DOI: 10.1039/d3ay01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
GO is a 2D nanomaterial that has attracted attention in many industries in recent years, such as the chemical industry, electronics or medicine. Due to its unique properties such as strength, hydrophilicity and large specific surface area with the possibility of functionalization, GO is a particularly attractive material in biomedicine as a candidate for use in targeted drug delivery. In such a case, we need information on whether graphene oxide penetrates into cells and whether we are able to detect and monitor GO in these cells during and also after the treatment to evaluate possible degradation process of GO and its interaction within the cell compartements. This work introduces the Raman spectroscopy as label-free detection method showing the advantages of combining Raman spectroscopy with MCR (Multivariate Curve Resolution) analysis for advanced detection of GO in cervical cancer (HeLa) cells. Our synthesized GO is characterized firstly by AFM, SEM and Raman spectroscopy and then MCR-Raman spectroscopy is used to detect internalized GO in individual HeLa cells. Moreover, by using our methodology, distribution of GO as well as its chemical stability inside the cell for up to six months is investigated without using any additional labeling or tracing the GO. Thus, MCR-Raman spectroscopy may become a new analytical tool in preclinical and clinical applications of graphene-based nanotheranostics.
Collapse
Affiliation(s)
- Zuzana Chaloupková
- CATRIN - Regional Center of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czechia.
| | - Ludmila Žárská
- CATRIN - Regional Center of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czechia.
| | - Jan Belza
- CATRIN - Regional Center of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czechia.
- Department of Physcial Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Kateřina Poláková
- CATRIN - Regional Center of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czechia.
| |
Collapse
|
4
|
A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium. INORGANICS 2022. [DOI: 10.3390/inorganics10110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG.
Collapse
|
5
|
Pirone D, Mugnano M, Memmolo P, Merola F, Lama GC, Castaldo R, Miccio L, Bianco V, Grilli S, Ferraro P. Three-Dimensional Quantitative Intracellular Visualization of Graphene Oxide Nanoparticles by Tomographic Flow Cytometry. NANO LETTERS 2021; 21:5958-5966. [PMID: 34232045 PMCID: PMC9297328 DOI: 10.1021/acs.nanolett.1c00868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interaction of nanoparticles (NPs) with cells is of fundamental importance in biology and biomedical sciences. NPs can be taken up by cells, thus interacting with their intracellular elements, modifying the life cycle pathways, and possibly inducing death. Therefore, there is a great interest in understanding and visualizing the process of cellular uptake itself or even secondary effects, for example, toxicity. Nowadays, no method is reported yet in which 3D imaging of NPs distribution can be achieved for suspended cells in flow-cytometry. Here we show that, by means of label-free tomographic flow-cytometry, it is possible to obtain full 3D quantitative spatial distribution of nanographene oxide (nGO) inside each single flowing cell. This can allow the setting of a class of biomarkers that characterize the 3D spatial intracellular deployment of nGO or other NPs clusters, thus opening the route for quantitative descriptions to discover new insights in the realm of NP-cell interactions.
Collapse
Affiliation(s)
- Daniele Pirone
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Department
of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, via Claudio 21, 80125 Napoli, Italy
| | - Martina Mugnano
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Francesco Merola
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Giuseppe Cesare Lama
- Institute
of Polymers, Composites and Biomaterials, CNR-IPCB, Via Campi
Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Rachele Castaldo
- Institute
of Polymers, Composites and Biomaterials, CNR-IPCB, Via Campi
Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vittorio Bianco
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Simonetta Grilli
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”, CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
6
|
Kapustová M, Puškárová A, Bučková M, Granata G, Napoli E, Annušová A, Mesárošová M, Kozics K, Pangallo D, Geraci C. Biofilm inhibition by biocompatible poly(ε-caprolactone) nanocapsules loaded with essential oils and their cyto/genotoxicity to human keratinocyte cell line. Int J Pharm 2021; 606:120846. [PMID: 34216769 DOI: 10.1016/j.ijpharm.2021.120846] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Essential oils (EOs) of Thymus capitatus (Th) carvacrol chemotype and Origanum vulgare (Or) thymol and carvacrol chemotype were encapsulated in biocompatible poly(ε-caprolactone) nanocapsules (NCs). These nanosystems exhibited antibacterial, antifungal, and antibiofilm activities against Staphylococcus aureus, Escherichia coli, and Candida albicans. Th-NCs and Or-NCs were more effective against all tested strains than pure EOs and at the same time were not cytotoxic on HaCaT (T0020001) human keratinocyte cell line. The genotoxic effects of EO-NCs and EOs on HaCaT were evaluated using an alkaline comet assay for the first time, revealing that Th-NCs and Or-NCs did not induce DNA damage compared with untreated control HaCaT cells in vitro after 24 h. The cells morphological changes were assessed by label-free live cell Raman imaging. This study demonstrate the ability of poly(ε-caprolactone) nanocapsules loaded with thyme and oregano EOs to reduce microbial and biofilm growth and could be an ecological alternative in the development of new antimicrobial strategies.
Collapse
Affiliation(s)
- Magdaléna Kapustová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Giuseppe Granata
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Edoardo Napoli
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Adriana Annušová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84511 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Monika Mesárošová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia.
| | - Corrada Geraci
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
7
|
Sorrentino A, Cataldo A, Curatolo R, Tagliatesta P, Mosca L, Bellucci S. Novel optimized biopolymer-based nanoparticles for nose-to-brain delivery in the treatment of depressive diseases. RSC Adv 2020; 10:28941-28949. [PMID: 35520064 PMCID: PMC9055835 DOI: 10.1039/d0ra04212a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
A valid option to bypass the obstacle represented by the blood–brain barrier (BBB) in brain delivery is the use of the unconventional intranasal route of administration. The treatment of depressive diseases, resulting from the depletion of a neurotransmitter in the inter-synaptic space, such as serotonin, is indirectly treated using molecules that can permeate the BBB unlike the latter. In the present article, a set of nanovectors were produced using a mucoadhesive biopolymer, i.e. alginate (Alg). Optimizing the reaction, polymeric nanoparticles having diameter of 30–70 nm were produced, and water stable multi-walled carbon nanotubes functionalized (MWCNT-COOH)/Alg complexes were obtained. These nanovectors were loaded with serotonin, evaluating drug loading/release. By means of Raman microscopy, the cellular internalization of the (MWCNT-COOH)/Alg complex was demonstrated. A complete biocompatibility on neuronal cells was proved for the whole set of nanovectors. Finally, a method of self-administration was tested, which involves the use of a household apparatus, such as an aerosol machine, observing a fine particulate, able to deliver the nanovectors through the nose. A valid option to bypass the obstacle represented by the blood–brain barrier (BBB) in brain delivery is the use of the unconventional intranasal route of administration.![]()
Collapse
Affiliation(s)
| | - Antonino Cataldo
- INFN-Laboratori Nazionali di Frascati
- Frascati
- Italy
- Department of Engineering
- Polytechnic of Marche University of Ancona
| | - Riccardo Curatolo
- INFN-Laboratori Nazionali di Frascati
- Frascati
- Italy
- Dipartimento di Scienze e Tecnologie Chimiche
- Universita' di Roma Tor Vergata
| | - Pietro Tagliatesta
- Dipartimento di Scienze e Tecnologie Chimiche
- Universita' di Roma Tor Vergata
- Rome
- Italy
| | - Luciana Mosca
- Department of Biochemical Sciences
- Sapienza University of Rome
- Rome
- Italy
| | | |
Collapse
|
8
|
Li Y, Zheng L, Xiao L, Wang L, Cui J, Sha D, Liu C. Eco-friendly development of an ultrasmall IONP-loaded nanoplatform for bimodal imaging-guided cancer theranostics. Biomater Sci 2020; 8:6375-6386. [DOI: 10.1039/d0bm00867b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ultrasmall IONP-decorated graphene oxide (GO) nanohybrids present T1/T2 dual MRI imaging-guided photothermal-chemo combined anticancer theranostics efficacy.
Collapse
Affiliation(s)
- Yulin Li
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| | - Ling Zheng
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| | - Lan Xiao
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane
- Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM)
| | - Liudi Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| | - Jingyuan Cui
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| | - Dongyong Sha
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Engineering Research Centre for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
9
|
Kálosi A, Labudová M, Annušová A, Benkovičová M, Bodík M, Kollár J, Kotlár M, Kasak P, Jergel M, Pastoreková S, Siffalovic P, Majkova E. A bioconjugated MoS2 based nanoplatform with increased binding efficiency to cancer cells. Biomater Sci 2020; 8:1973-1980. [DOI: 10.1039/c9bm01975h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Preparation and study of a MoS2 nanosheet based nanoplatform for a cancer detection and treatment system equipped with an antibody–antigen based recognition element.
Collapse
|
10
|
Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. Neurotoxicology 2019; 77:30-39. [PMID: 31862286 DOI: 10.1016/j.neuro.2019.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) and graphene-based nanomaterials have been widely applied in recent years, but their potential health risk and neurotoxic potentials remain poorly understood. In this study, neurotoxic potential of GO and its underlying molecular and cellular mechanism were investigated using the nematode, Caenorhabditis elegans. Deposition of GO in the head region and increased reactive oxygen species (ROS) was observed in C. elegans after exposure to GO. The neurotoxic potential of GO was then investigated, focusing on neurotransmitters contents and neuronal activity using AFD sensory neurons. The contents of all neurotransmitters, such as, tyrosine, tryptophan, dopamine, tyramine, and GABA, decreased significantly by GO exposure. Decreased fluorescence of Pgcy-8:GFP, a marker of AFD sensory neuron, by GO exposure suggested GO could cause neuronal damage on AFD neuron. GO exposure led decreased expression of ttx-1 and ceh-14, genes required for the function of AFD neurons also confirmed possible detrimental effect of GO to AFD neuron. To understand physiological meaning of AFD neuronal damage by GO exposure, locomotive behavior was then investigated in wild-type as well as in loss-of-function mutants of ttx-1 and ceh-14. GO exposure significantly altered locomotor behavior markers, such as, speed, acceleration, stop time, etc., in wild-type C. elegans, which were mostly rescued in AFD neuron mutants. The present study suggested the GO possesses neurotoxic potential, especially on neurotransmitters and AFD neuron in C. elegans. These findings provide useful information to understand the neurotoxic potential of GO and other graphene-based nanomaterials, which will guide their safe application.
Collapse
Affiliation(s)
- Mina Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
11
|
Piperno A, Mazzaglia A, Scala A, Pennisi R, Zagami R, Neri G, Torcasio SM, Rosmini C, Mineo PG, Potara M, Focsan M, Astilean S, Zhou GG, Sciortino MT. Casting Light on Intracellular Tracking of a New Functional Graphene-Based MicroRNA Delivery System by FLIM and Raman Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46101-46111. [PMID: 31729219 DOI: 10.1021/acsami.9b15826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The theranostic ability of a new fluorescently labeled cationic cyclodextrin-graphene nanoplatform (GCD@Ada-Rhod) was investigated by studying its intracellular trafficking and its ability to deliver plasmid DNA and microRNA. The nanoplatform was synthesized by both covalent and supramolecular approaches, and its chemical structure, morphology, and colloidal behavior were investigated by TGA, TEM, spectroscopic analysis such as UV-vis, fluorescence emission, DLS, and ζ-potential measurements. The cellular internalization of GCD@Ada-Rhod and its perinuclear localization were assessed by FLIM, Raman imaging, and fluorescence microscopy. Biological experiments with pCMS-EGFP and miRNA-15a evidenced the excellent capability of GCD@Ada-Rhod to deliver both pDNA and microRNA without significant cytotoxicity. The biological results evidenced an unforeseen caveolae-mediated endocytosis internalization pathway (generally expected for particles <200 nm), despite the fact that the GCD@Ada-Rhod size is about 400 nm (by DLS and TEM data). We supposed that the internalization pathway was driven by physical-chemical features of GCD@Ada-Rhod, and the caveolae-mediated uptake enhanced the transfection efficiency, avoiding the lysosomal acid degradation. The cellular effects of internalized miRNA-15a on the oncogene protein BCL-2 were investigated at two different concentrations (N/P = 10 and 5), and a reduction of the BCL-2 level was detected at a low concentration (i.e., N/P = 10). miRNA-15a is considered an ideal cancer therapy molecule due to its activity on multiple transcription factors, and the elucidation of the correlation between the concentration of delivered miRNA-15a and the down-/up-regulation of the BCL-2 level, documented for the first time in this work, could be an important contribution to guide its clinical application.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
- Shenzhen International Institute for Biomedical Research , Shenzhen , Guangdong 518119 , China
| | - Roberto Zagami
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Serena M Torcasio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Placido G Mineo
- Department of Chemical Sciences , University of Catania , V.le A. Doria 6 , 95125 Catania , Italy
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
- Department of Biomolecular Physics, Faculty of Physics , Babes-Bolyai University , M Kogalniceanu Str. 1 , 400084 Cluj-Napoca , Romania
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research , Shenzhen , Guangdong 518119 , China
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| |
Collapse
|
12
|
Kim J, Nam SH, Lim DK, Suh YD. SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics. NANOSCALE 2019; 11:21724-21727. [PMID: 31495836 DOI: 10.1039/c9nr05159g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although diverse endogenous biomolecules involved in life processes are of major interest in cell biology, there is still a lack of suitable methods for studying biomolecules within live cells without labelling. Herein, we describe a near-infrared (NIR) surface-enhanced Raman scattering (SERS)-based particle tracking technique gathering chemical information inside live cells for monitoring their intracellular dynamics. The wide-field SERS imaging spectroscopy system facilitates high temporal resolution (200 ms) under high spatial resolution (512 × 512 pixels) for one live cell. With high spatiotemporal resolution and signal-to-background ratio, we show that the Raman signal from intracellular cargoes in live cells is sporadically observed and localized to a vesicular level.
Collapse
Affiliation(s)
- Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | | | | | | |
Collapse
|
13
|
Bugárová N, Špitálsky Z, Mičušík M, Bodík M, Šiffalovič P, Koneracká M, Závišová V, Kubovčíková M, Kajanová I, Zaťovičová M, Pastoreková S, Šlouf M, Majková E, Omastová M. A Multifunctional Graphene Oxide Platform for Targeting Cancer. Cancers (Basel) 2019; 11:cancers11060753. [PMID: 31146494 PMCID: PMC6627436 DOI: 10.3390/cancers11060753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Abstract
Diagnosis of oncological diseases remains at the forefront of current medical research. Carbonic Anhydrase IX (CA IX) is a cell surface hypoxia-inducible enzyme functionally involved in adaptation to acidosis that is expressed in aggressive tumors; hence, it can be used as a tumor biomarker. Herein, we propose a nanoscale graphene oxide (GO) platform functionalized with magnetic nanoparticles and a monoclonal antibody specific to the CA IX marker. The GO platforms were prepared by a modified Hummers and Offeman method from exfoliated graphite after several centrifugation and ultrasonication cycles. The magnetic nanoparticles were prepared by a chemical precipitation method and subsequently modified. Basic characterization of GO, such as the degree of oxidation, nanoparticle size and exfoliation, were determined by physical and chemical analysis, including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM). In addition, the size and properties of the poly-L-lysine-modified magnetic nanoparticles were characterized. The antibody specific to CA IX was linked via an amidic bond to the poly-L-lysine modified magnetic nanoparticles, which were conjugated to GO platform again via an amidic bond. The prepared GO-based platform with magnetic nanoparticles combined with a biosensing antibody element was used for a hypoxic cancer cell targeting study based on immunofluorescence.
Collapse
Affiliation(s)
- Nikola Bugárová
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Zdenko Špitálsky
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Matej Mičušík
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Michal Bodík
- Institute of Physics, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Peter Šiffalovič
- Institute of Physics, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Martina Koneracká
- Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia.
| | - Vlasta Závišová
- Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia.
| | - Martina Kubovčíková
- Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia.
| | - Ivana Kajanová
- Institute of Virology, Biomedical Research Center, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Miriam Zaťovičová
- Institute of Virology, Biomedical Research Center, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Silvia Pastoreková
- Institute of Virology, Biomedical Research Center, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry AS CR, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Eva Majková
- Institute of Physics, SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Mária Omastová
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
14
|
Zaharie-Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Efficient combined near-infrared-triggered therapy: Phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dye-doxorubicin nanoplatforms. J Colloid Interface Sci 2019; 552:218-229. [PMID: 31128402 DOI: 10.1016/j.jcis.2019.05.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
Significant efforts are currently being funneled into the improvement of therapeutic outcomes in cancer by designing hybrid nanomaterials that synergistically combine chemotherapeutic abilities and near-infrared (NIR) light-activated photothermal (PTT) and photodynamic (PDT) activity. Herein, a nanotherapeutic platform is specifically designed to integrate combinational functionalities: chemotherapy, PTT, PDT and traceable optical properties. The system, based on chitosan-reduced graphene oxide (chit-rGO), incorporates and carries a large payload of IR820 dye with dual PTT and PDT activity and a chemotherapeutic drug, doxorubicin (DOX). The potential of the fabricated nanoplatforms to operate as an NIR activatable therapeutic agent is first assessed in aqueous solution by investigating its ability to generate singlet oxygen and heat under NIR irradiation with 785 nm laser irradiation. The in vitro anticancer activity of chit-rGO-IR820-DOX is evaluated against murine colon carcinoma cells (C26). The fabricated nanosystem exhibits synergistic anticancer activity against C26 cancer cells by combining IR820 induced PDT, simultaneous graphene and IR820 induced PTT and the chemotherapeutic effect of DOX. Notably, the therapeutic performance of chit-rGO-IR820-DOX can be controlled by the ratio between IR820 and DOX. Moreover, chit-rGO-IR820-DOX facilitates localization inside cancer cells correlated with the release of DOX via mapping by confocal Raman microscopy.
Collapse
Affiliation(s)
- Diana Zaharie-Butucel
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania.
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Emilia Licarete
- Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania.
| |
Collapse
|