1
|
Karami P, Gholamin D, Fathi F, Afsar T, Johari-Ahar M. Anti-CCP biosensors in rheumatoid arthritis. Clin Chim Acta 2024; 561:119767. [PMID: 38857671 DOI: 10.1016/j.cca.2024.119767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Biosensors are unique analytical tools for the detection of biomarkers. Of these, autoantibodies against citrullinated proteins (ACPA) are useful for the differential diagnosis of rheumatoid arthritis (RA). The autoantibodies may be detected by immunoassay technology using synthetic cyclic citrullinated peptides (CCP), ie, anti-CCP. Recently, several biosensors have been developed for anti-CCP using CCP and mutated citrullinated vimentin (MCV) as recognition elements. In this review we highlight all currently available ACPA biosensor technology including those based on fluorescence, chemiluminescence, electrochemiluminescence (ECL), surface-enhanced Raman scattering (SERS)-based, surface plasmon resonance (SPR), lateral flow immunoassays (LFIA), and electrochemical. We explore various peptides as recognition elements, electrode modifiers and signal amplification systems thus providing new opportunities for next-generation biosensor design in RA.
Collapse
Affiliation(s)
- Pari Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danial Gholamin
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Taha Afsar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Johari-Ahar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Wen HY, Chiang CC, Chen RY, Ni WZ, Weng YQ, Yeh YT, Hsu HC. Immunosensing for Early Detection of Rheumatoid Arthritis Biomarkers: Anti-Cyclic Citrullinated Peptide Antibodies Based on Tilted-Fiber Bragg Grating Biosensor. Bioengineering (Basel) 2023; 10:bioengineering10020261. [PMID: 36829755 PMCID: PMC9952665 DOI: 10.3390/bioengineering10020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is regarded as a chronic, immune-mediated disease that leads to the damage of various types of immune cells and signal networks, followed by inappropriate tissue repair and organ damage. RA is primarily manifested in the joints, but also manifests in the lungs and the vascular system. This study developed a method for the in vitro detection of RA through cyclic citrullinated peptide (CCP) antibodies and antigens. The diameter of a tilted-fiber Bragg grating (TFBG) biosensor was etched to 50 μm and then bonded with CCP antigens and antibodies. The small variations in the external refractive index and the optical fiber cladding were measured. The results indicated that the self-assembled layer of the TFBG biosensor was capable of detecting pre- and post-immune CCP antigen and CCP peptide concentrations within four minutes. A minimum CCP concentration of 1 ng/mL was detected with this method. This method is characterized by the sensor's specificity, ability to detect CCP reactions, user-friendliness, and lack of requirement for professional analytical skills, as the detections are carried out by simply loading and releasing the test samples onto the platform. This study provides a novel approach to medical immunosensing analysis and detection. Although the results for the detection of different concentrations of CCP antigen are not yet clear, it was possible to prove the concept that the biosensor is feasible even if the measurement is not easy and accurate at this stage. Further study and improvement are required.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Chia-Chin Chiang
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Rou-Yu Chen
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wei-Zhi Ni
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yu-Qiao Weng
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Hsiang-Cheng Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
4
|
Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2021; 43:939-954. [PMID: 34902168 DOI: 10.1002/elps.202100236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
This review aims to illustrate sensitivity enhancement methods in capillary electrophoresis (CE) and their applications for pharmaceutical and related biochemical substance analyses. The first two parts of the article describe the introduction and principle of CE. The main part focuses on strategies for sensitivity improvement in CE including detector and capillary technologies and pre-concentration techniques. Applications of these techniques for pharmaceutical and biomedical substance analyses are surveyed during the years 2018-2021. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Oraphan Anurukvorakun
- Department of Cosmetic Science, Phranakorn Rajabhat University, Bangkok, 10220, Thailand
| |
Collapse
|
5
|
Huang Y, Han X, Yu X, Wang S, Zhai H. Capillary Electrophoresis-Indirect Laser-Induced Fluorescence Detection of Neomycin in Fish. Chromatographia 2021. [DOI: 10.1007/s10337-021-04075-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Deng X, Zeng M, Wang X, Liu J, Ma Y, Wang X, Xu L. Preparation and characterization of cyclic citrullinated peptide-immobilized latex beads for measurement of anti-citrillinated protein antibody through latex particle-enhanced turbidimetric immunoassay. J Chromatogr A 2021; 1642:462000. [PMID: 33684874 DOI: 10.1016/j.chroma.2021.462000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The anti-citrillinated protein antibody (ACPA) plays an important role in early diagnosis of rheumatoid arthritis (RA), and is usually detected by using cyclic citrullinated peptide (CCP) as antigen. The ACPA against CCP test is usually performed utilizing enzyme-linked immunosorbent assay (ELISA), but the ELISA is expensive and time-consuming. Here, latex particle-enhanced turbidimetric immunoassay (LTIA) based on CCP-immobilized latex bead was proposed for fast measurements of ACPA of RA patients. CCP-immobilized latex bead was fabricated through three methods, including direct coupling, overall coupling and layer by layer coupling. According to the optimized experiments, layer-by-layer coupling was the best method with advantages of time-saving, simple operation and good repeatability. In addition, a spacer arm of appropriate length between latex beads and CCP could avoid stereoscopic obstacles and make ACPA closer to CCP. The CCP-immobilized latex bead based on layer by layer coupling (CCP-LB-LLC) was used for assembling the homemade kit, which was applied in fast measurements of ACPA through LTIA. The homemade kit possessed a low limit of detection (0.2 U/mL) and an acceptable the batch-to-batch reproducibility. In addition, the homemade kit can be stored at 4 °C for at least one month. When used to detect 20 clinical samples, the results of homemade kit were consistent with commercial ELISA. Furthermore, LTIA based on the homemade kit was simpler and cheaper than ELISA. These results demonstrated that the homemade kit could be useful for diagnosis of RA patients.
Collapse
Affiliation(s)
- Xiyan Deng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Min Zeng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jiyang Liu
- School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China
| | - Yuanchun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| | - Liang Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China.
| |
Collapse
|
7
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based immunoassay and aptamer assay: A review. Electrophoresis 2020; 41:414-433. [PMID: 31975407 DOI: 10.1002/elps.201900426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Over the last two decades, the group of techniques called affinity probe CE has been widely used for the detection and the determination of several types of biomolecules with high sensitivity. These techniques combine the low sample consumption and high separation power of CE with the selectivity of the probe to the target molecule. The assays can be defined according to the type of probe used: CE immunoassays, with an antibody as the probe, or aptamer-based CE, with an aptamer as the probe. Immunoassays are generally divided into homogeneous and heterogeneous groups, and homogeneous variant can be further performed in competitive or noncompetitive formats. Interacting partners are free in solution at homogeneous assay, as opposed to heterogeneous analyses, where one of them is immobilized onto a solid support. Highly sensitive fluorescence, chemiluminescence or electrochemical detections were typically used in this type of study. The use of the aptamers as probes has several advantages over antibodies such as shorter generation time, higher thermal stability, lower price, and lower variability. The aptamer-based CE technique was in practice utilized for the determination of proteins in biological fluids and environmentally or clinically important small molecules. Both techniques were also transferred to microchip. This review is focused on theoretical principles of these techniques and a summary of their applications in research.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
9
|
Nguyen BT, Kang MJ. Application of Capillary Electrophoresis with Laser-Induced Fluorescence to Immunoassays and Enzyme Assays. Molecules 2019; 24:E1977. [PMID: 31121978 PMCID: PMC6571882 DOI: 10.3390/molecules24101977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Capillary electrophoresis using laser-induced fluorescence detection (CE-LIF) is one of the most sensitive separation tools among electrical separation methods. The use of CE-LIF in immunoassays and enzyme assays has gained a reputation in recent years for its high detection sensitivity, short analysis time, and accurate quantification. Immunoassays are bioassay platforms that rely on binding reactions between an antigen (analyte) and a specific antibody. Enzyme assays measure enzymatic activity through quantitative analysis of substrates and products by the reaction of enzymes in purified enzyme or cell systems. These two category analyses play an important role in the context of biopharmaceutical analysis, clinical therapy, drug discovery, and diagnosis analysis. This review discusses the expanding portfolio of immune and enzyme assays using CE-LIF and focuses on the advantages and disadvantages of these methods over the ten years of existing technology since 2008.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
10
|
Thompson S, Pappas D. A fluorescence toolbox: A review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis 2018; 40:606-615. [DOI: 10.1002/elps.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- S. Thompson
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| |
Collapse
|