1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Zhou L, Liu C, Zheng Y, Huang Z, Zhang X, Xiao Y. Bio-orthogonal Toolbox for Monitoring Nitric Oxide in Targeted Organelles of Live Cells and Zebrafishes. Anal Chem 2022; 94:15678-15685. [DOI: 10.1021/acs.analchem.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chuanhao Liu
- School of Medicine, Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Lee HW, Pati TK, Lee IJ, Lee JM, Kim BR, Kwak SY, Kim HM. In Vivo Simultaneous Imaging of Plasma Membrane and Lipid Droplets in Hepatic Steatosis using Red-Emissive Two-Photon Probes. Anal Chem 2022; 94:15100-15107. [PMID: 36265084 DOI: 10.1021/acs.analchem.2c03285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane, which is a phosphoglyceride bilayer at the outer edge of the cell, plays diverse and important roles in biological systems. Visualization of the plasma membrane in live samples is important for various applications in biological functions. We developed an amphiphilic two-photon (TP) fluorescent probe (THQ-Mem) to selectively monitor the plasma membrane in live samples. This probe exhibited red emission (620-700 nm), large TP absorption cross sections (δmax > 790 GM), and high selectivity to the plasma membrane. In cultured cells and in vivo hepatic tissue imaging, THQ-Mem showed bright TP-excited fluorescence (TPEF) and remarkable selectivity for the plasma membrane. Furthermore, simultaneous in vivo imaging with THQ-Mem and a TP lipid droplet probe could serve as an efficient tool to monitor morphological and physiological changes in the plasma membrane and lipid droplets.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Tanmay Kumar Pati
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Jeong-Mi Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Bo Ra Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Sun Young Kwak
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
5
|
Tan L, Yang Q, Peng L, Xie C, Luo K, Zhou L. Molecular engineering-based a dual-responsive fluorescent sensor for sulfur dioxide and nitric oxide detecting in acid rain and its imaging studies in biosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128947. [PMID: 35472539 DOI: 10.1016/j.jhazmat.2022.128947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Sulfur dioxide (SO2) and nitric oxide (NO), known as sulfur oxides and nitrogen oxides, are toxic air pollutants and seriously threaten human health. Herein, for the first time, a robust dual-response fluorescent sensor CGT with two different emission fluorophores and dual well-known response-group for visual bisulphites (HSO3-) and nitrites (NO2-) detection was reported. Specifically, once CGT was incubated with HSO3- firstly, the color of the test solution changed to dark yellow with no-fluorescence emission, following added NO2-, the color of the test solution changed to yellow with a bright cyan emission. However, NO2- was added firstly, the color of the test solution changed to dark purple with a white emission, and then added HSO3-, the color of the test solution changed to yellow with a bright cyan emission. Furthermore, CGT showed high sensitivity and selectivity toward HSO3- and NO2- detecting with good detection limits as low as 20.17 nM and 4.14 nM, respectively. Impressively, CGT showed good detection capability in complex aqueous samples and was successfully used for the detection of HSO3- and NO2- in biosystems. Thus, the experimental results indicated CGT as a powerful novel visual detecting tool for HSO3- and NO2- detecting in complex acid rain and biosystems.
Collapse
Affiliation(s)
- Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longpeng Peng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Liao Y, Wang S, Song Y, Shi Z, Chen G, Nan X, Feng H, He W. A novel bifunctional fluorescent probe for selectively sensing of Hg2+ or ClO- and its application in living cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
He Y, Hu W, Chai L, Wang Y, Wang X, Liang T, Li H, Li C. A fast responsive and cell membrane-targetable near-infrared H 2S fluorescent probe for drug resistance bioassays in chemotherapy. Chem Commun (Camb) 2022; 58:7301-7304. [PMID: 35678466 DOI: 10.1039/d2cc02430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell membrane-targeted near-infrared fluorescent probe, CMCu-H2S, was fabricated through employing hydrophobic chains and cyclen-Cu2+ as targeting and recognition groups, respectively. NIR fluorescence of CMCu-H2S can significantly increase after reacting with H2S by removing the quenchable Cu2+. This probe exhibited high selectivity and an extremely fast response rate. Cell imaging results demonstrated that there was a close relationship between the overexpression of NFS1 and drug resistance and inhibition of NFS1 was beneficial for improving the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Yifan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Li Chai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xian Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Tao Liang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
8
|
Sheng W, Zhang X, Yu M, Jin M, Li N, Sun C, Wang L, Xia Q, Li X, Zhang Y, Zhu B, Liu K. A novel cell membrane-targeting fluorescent probe for imaging endogenous/exogenous formaldehyde in live cells and zebrafish. Analyst 2021; 146:7554-7562. [PMID: 34779444 DOI: 10.1039/d1an01669e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formaldehyde (FA), an economically important chemical, has become a global pollutant and poses a threat to human health. As a kind of reactive carbonyl species, the abnormal production and degradation of FA in cells are related to many diseases. Therefore, it is of great significance to detect FA on the cell membrane and identify the internal and external sources of FA to analyse the causes of FA-induced physiological and pathological changes. In this work, a novel fluorescent probe Mem-FA was constructed by combining a dodecyl chain to target the cell membrane. Based on photoinduced electron transfer (PET), the probe relies on hydrazine as the receptor for FA recognition. Through this mechanism, the probe can detect FA sensitively, selectively and quantitatively. In addition, the probe Mem-FA can detect FA in vivo, especially the endogenous FA produced by tetrahydrofolate in a one-carbon cycle. More importantly, the probe Mem-FA can sensitively detect and distinguish the internal and external sources of FA on the cell membrane. Therefore, Mem-FA is capable of specifically tracing the fluctuations of FA-induced diseases.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| |
Collapse
|
9
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
10
|
Yu H, Guo Y, Zhu W, Havener K, Zheng X. Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Mukherjee T, Kanvah S, Klymchenko AS, Collot M. Probing Variations of Reduction Activity at the Plasma Membrane Using a Targeted Ratiometric FRET Probe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40315-40324. [PMID: 34424677 DOI: 10.1021/acsami.1c11069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma membrane (PM) is the turntable of various reactions that regulate essential functionalities of cells. Among these reactions, the thiol disulfide exchange (TDE) reaction plays an important role in cellular processes. We herein designed a selective probe, called membrane reduction probe (MRP), that is able to report TDE activity at the PM. MRP is based on a green emitting BODIPY PM probe connected to rhodamine through a disulfide bond. MRP is fluorogenic as it is turned off in aqueous media due to aggregation-caused quenching, and once inserted in the PM, it displays a bright red signal due to an efficient fluorescence energy resonance transfer (FRET) between the BODIPY donor and the rhodamine acceptor. In the PM model, the MRP can undergo TDE reaction with external reductive agents as well as with thiolated lipids embedded in the bilayer. Upon TDE reaction, the FRET is turned off and a bright green signal appears allowing a ratiometric readout of this reaction. In cells, the MRP quickly labeled the PM and was able to probe variations of TDE activity using ratiometric imaging. With this tool in hand, we were able to monitor variations of TDE activity at the PM under stress conditions, and we showed that cancer cell lines presented a reduced TDE activity at the PM compared to noncancer cells.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
12
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
13
|
Zhao L, Huang Z, Ma D, Yan Y, Zhang X, Xiao Y. A nucleus targetable fluorescent probe for ratiometric imaging of endogenous NO in living cells and zebrafishes. Analyst 2021; 146:4130-4134. [DOI: 10.1039/d1an00426c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nucleus targetable fluorescent probe is developed based on a Hoechst and rhodamine dyad for ratiometric imaging of endogenous NO in living cells and zebrafishes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Daqing Ma
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
- a Academy of Safety Science and Technology
| | - Yu Yan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
14
|
Naphthalimide-based probe with strong two-photon excited fluorescence and high specificity to cell membranes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Maiti D, Islam ASM, Sasmal M, Dutta A, Katarkar A, Ali M. A coumarin embedded highly sensitive nitric oxide fluorescent sensor: kinetic assay and bio-imaging applications. Org Biomol Chem 2020; 18:8450-8458. [PMID: 33057542 DOI: 10.1039/d0ob00567c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorescence spectroscopy is a significant bio-analytical technique for specific detection of nitric oxide (NO) and for broadcasting the in vitro and in vivo biological activities of this gasotransmitter. Herein, a benzo-coumarin embedded smart molecular probe (BCM) is employed for NO sensing through detailed fluorescence studies in purely aqueous medium. All the spectroscopic analysis and literature reports clearly validate the mechanistic insight of this sensing strategy i.e., the initial formation of 1,2,3,4-oxatriazole on treatment of the probe with NO which finally converted to its carboxylic acid derivative. This oxatriazole formation results in a drastic enhancement in fluoroscence intensity due to the photoinduced electron transfer (PET) effect. The kinetic investigation unveils the second and first-order dependency on [NO] and [BCM] respectively. The very low detection limit (16 nM), high fluorescence enhancement (123 fold) in aqueous medium and good formation constant (Kf = (4.33 ± 0.48) × 104 M-1) along with pH invariability, non-cytotoxicity, biocompatibility and cell permeability make this probe a very effective one for tracking NO intracellularly.
Collapse
Affiliation(s)
- Debjani Maiti
- Department of Chemistry Jadavpur University, Kolkata 700 032, India.
| | | | - Mihir Sasmal
- Department of Chemistry Jadavpur University, Kolkata 700 032, India.
| | - Ananya Dutta
- Department of Chemistry Jadavpur University, Kolkata 700 032, India.
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Mahammad Ali
- Department of Chemistry Jadavpur University, Kolkata 700 032, India. and Vice-Chancellor, Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India.
| |
Collapse
|
17
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Zhong W, Wang L, Qin D, Zhou J, Duan H. Two Novel Fluorescent Probes as Systematic Sensors for Multiple Metal Ions: Focus on Detection of Hg 2. ACS OMEGA 2020; 5:24285-24295. [PMID: 33015445 PMCID: PMC7528189 DOI: 10.1021/acsomega.0c02481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Many precedents prove that fluorescent probes are promising candidates for detection of metal ions in the environment and biological systems. Herein, two novel photoinduced electron transfer (PET)-based fluorescent probes, CH 3 -R6G and CN-R6G, were rationally synthesized by incorporating a triazolyl benzaldehyde moiety into the rhodamine 6G fluorophore. The optical properties of these probes were studied using an ultraviolet-visible (UV-vis) absorption spectrophotometer and a fluorescence spectrophotometer. Through the analysis of the test results, it is concluded that the selectivity and sensitivity of these two probes to Hg2+ are better than to other metal ions (Ag+, Al3+, Ba2+, Cd2+, Co3+, Cu2+, Cr3+, Fe3+, Ga2+, K+, Mg2+, Na+, Ni2+, Pb2+, and Zn2+). According to the standard curve diagram, the detection limits of CH 3 -R6G and CN-R6G were determined to be 1.34 × 10-8 and 1.56 × 10-8 M, respectively. Reaction of the probes with Hg2+ resulted in a color change of the solution from colorless to pink. The corresponding molecular geometric configuration, orbital electron distribution, and orbital energy of these two compounds were predicted by density functional theory (DFT). The two probes CH 3 -R6G and CN-R6G have been successfully used for imaging Hg2+ in live breast cancer cells, thereby indicating their great potential for the micro-detection of Hg2+ in vivo.
Collapse
Affiliation(s)
- Wenxia Zhong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250014, Shandong, China
| | - Dawei Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Jianhua Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| |
Collapse
|
19
|
Wang L, Zhang J, An X, Duan H. Recent progress on the organic and metal complex-based fluorescent probes for monitoring nitric oxide in living biological systems. Org Biomol Chem 2020; 18:1522-1549. [PMID: 31995085 DOI: 10.1039/c9ob02561h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important gaseous signaling molecule related to various human diseases. To investigate the biological functions of NO, many strategies have been developed for real-time monitoring the NO levels in biological systems. Among these strategies, fluorescent probes are considered to be one of the most efficient and applicable methods owing to their excellent sensitivity and selectivity, high spatiotemporal resolution, noninvasiveness, and experimental convenience. Therefore, great efforts have been paid to the design, synthesis, and fluorescence investigation of novel NO fluorescent probes in the past several years. However, few of them exhibit practical applications owing to the low concentration, short half-life, and rapid diffusion characteristics of NO in biological systems. Rational design of NO fluorescent probes with excellent selectivity and sensitivity, low cytotoxicity, long-lived fluorescent emission, and low background interference is still a challenge for scientists all over the word. To provide spatial-temporal information, this article focuses on the progress made in the organic and metal complex-based NO fluorescent probes during the past five years. The key structural elements and sensing mechanisms of NO fluorescent probes are discussed. Some novel ratiometric, luminescence, and photoacoustic probes with low background interference and deep tissue penetrating ability are mentioned. All these probes have been used for imaging exogenous and endogenous NO in cells and animal models. More importantly, this article also describes the development of multi-functional NO fluorescent probes, such as organelle targeting probes, dual-analysis probes, and probe-drug conjugates, which will inspire the design of various functional fluorescent probes.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China. and Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China
| | - Juan Zhang
- Shandong Jinan Qilu Science Patent Office Ltd, Ji'nan 250014, Shandong Province, China
| | - Xue An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| |
Collapse
|
20
|
Liu F, Zang S, Jing J, Zhang X. A fluorescent probe based on reversible Michael addition-elimination reaction for the cycle between cysteine and H 2O 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3797-3801. [PMID: 32716465 DOI: 10.1039/d0ay00904k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cysteine oxidation by H2O2, generating either cysteine sulfenic acid (CSOH) or disulfide (CSSC), is involved in redox homeostasis and signaling. Compared with quantification of the cysteine content, monitoring the cysteine dynamics in real-time, in particular, takes on even greater importance. However, existing fluorescent probes suffer from low specificity or irreversible recognition mechanisms. In the present work, we have successfully developed a reversible fluorescent probe for the cycle between cysteine and H2O2 based on the Michael addition-elimination reaction. This probe features a specific and quantitative response to cysteine. The reversible detection was realized repeatedly with the addition of cysteine and H2O2 in order. We also demonstrated its usage for monitoring exogenous and endogenous cysteine in living cells. Eventually, this probe was capable of imaging cysteine dynamically in real-time.
Collapse
Affiliation(s)
- Feiran Liu
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Analytical and Testing Centre, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | |
Collapse
|
21
|
Sun Y, Wang L, Zhou J, Qin D, Duan H. A new phenothiazine‐based fluorescence sensor for imaging Hg
2+
in living cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yucheng Sun
- School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province 250353 China
| | - Lizhen Wang
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province 250014 China
| | - Jianhua Zhou
- School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province 250353 China
| | - Dawei Qin
- School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province 250353 China
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Ji'nan Shandong Province 250353 China
| |
Collapse
|
22
|
Shurpik DN, Sevastyanov DA, Zelenikhin PV, Padnya PL, Evtugyn VG, Osin YN, Stoikov II. Nanoparticles based on the zwitterionic pillar[5]arene and Ag +: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:421-431. [PMID: 32215229 PMCID: PMC7082700 DOI: 10.3762/bjnano.11.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
For the first time, stable pillar[5]arene/Ag+ nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag+ ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag+ (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag+ ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag+ (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag+ ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Denis A Sevastyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel L Padnya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Yuriy N Osin
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
23
|
Zhou T, Wang J, Xu J, Zheng C, Niu Y, Wang C, Xu F, Yuan L, Zhao X, Liang L, Xu P. A Smart Fluorescent Probe for NO Detection and Application in Myocardial Fibrosis Imaging. Anal Chem 2020; 92:5064-5072. [DOI: 10.1021/acs.analchem.9b05435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Collot M, Boutant E, Fam KT, Danglot L, Klymchenko AS. Molecular Tuning of Styryl Dyes Leads to Versatile and Efficient Plasma Membrane Probes for Cell and Tissue Imaging. Bioconjug Chem 2020; 31:875-883. [PMID: 32053748 DOI: 10.1021/acs.bioconjchem.0c00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The plasma membrane (PM) plays a major role in many biological processes; therefore, its proper fluorescence staining is required in bioimaging. Among the commercially available PM probes, styryl dye FM1-43 is one of the most widely used. In this work, we demonstrated that fine chemical modifications of FM1-43 can dramatically improve the PM staining. The newly developed probes, SP-468 and SQ-535, were found to display enhanced photophysical properties (reduced cross-talk, higher brightness, improved photostability) and, unlike FM1-43, provided excellent and immediate PM staining in 5 different mammalian cell types including neurons (primary culture and tissue imaging). Taking advantage of these features, we successfully used SP-468 in STED super resolution neuronal imaging. Additionally, we showed that the new probes displayed differences in their internalization pathways compared to their parent FM1-43. Finally, we showed that the new probes kept the ability to stain the PM of plant cells. Overall, this work presents new useful probes for PM imaging in cells and tissues and provides insights on the molecular design of new PM targeting molecules.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, University of Strasbourg, FR 67401 Illkirch, France
| | - Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, University of Strasbourg, FR 67401 Illkirch, France
| | - Kyong Tkhe Fam
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, University of Strasbourg, FR 67401 Illkirch, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Membrane Traffic in Healthy and Diseased Brain", F 75014 Paris, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, University of Strasbourg, FR 67401 Illkirch, France
| |
Collapse
|
25
|
Li N, Huang Z, Zhang X, Song X, Xiao Y. Reflecting Size Differences of Exosomes by Using the Combination of Membrane-Targeting Viscosity Probe and Fluorescence Lifetime Imaging Microscopy. Anal Chem 2019; 91:15308-15316. [PMID: 31691562 DOI: 10.1021/acs.analchem.9b04587] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are cell-secreted membrane-coated vesicles with their sizes variable from 30 to 150 nm. So far, there is no simple, fast, and economical way to evaluate the sizes of exosomes in living systems. Here, we put forward a hypothesis in which the sphere sizes (resulting in different curvature) may affect the local mobility/viscosity of exosome membranes. Based on this hypothesis, we propose a novel method to evaluate the exosome sizes by quantifying the membrane viscosity. For this sake, we design a membrane-targeting molecular rotor with its fluorescence lifetime sensitive to viscosity and use it under a fluorescence lifetime imaging microscope (FLIM). Through a multiple-step ultrafiltration technique, we isolate three individual size distributions (10-50, 50-100, and 100-220 nm) with exosomes from HeLa and MCF-7 cell culture media and then perform the FLIM assay on the above two groups. In both cases, we indeed find a regular pattern in which the membrane viscosity reflected by lifetime decreases with exosome sizes. We then perform the assay on exosomes from cancer cells, corresponding normal tissue cells, and serum of breast cancer patients. We find that exosomes from cancer cells have a fluorescence lifetime (larger viscosity) longer than that of normal tissue cells. The average fluorescence lifetime of exosomes from a triple-negative breast cancer patient is longer (or the viscosity is larger) than that of a HER2 positive one. Therefore, our new and simple method may hold application prospects in future cancer diagnosis.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xinbo Song
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
26
|
Xiong H, He L, Zhang Y, Wang J, Song X, Yang Z. A ratiometric fluorescent probe for the detection of hypochlorous acid in living cells and zebra fish with a long wavelength emission. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Jia HR, Zhu YX, Xu KF, Pan GY, Liu X, Qiao Y, Wu FG. Efficient cell surface labelling of live zebrafish embryos: wash-free fluorescence imaging for cellular dynamics tracking and nanotoxicity evaluation. Chem Sci 2019; 10:4062-4068. [PMID: 31015947 PMCID: PMC6461115 DOI: 10.1039/c8sc04884c] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/23/2019] [Indexed: 12/18/2022] Open
Abstract
Imaging the dynamics and behaviors of plasma membranes is at the leading edge of life science research. We report here the development of a universal red-fluorescent probe Chol-PEG-Cy5 for wash-free plasma membrane labelling both in vitro and in vivo. In aqueous solutions, the fluorescence of Chol-PEG-Cy5 is significantly quenched due to the intermolecular resonance energy transfer (RET) between neighbouring Cy5 moieties; however, upon membrane anchoring, the probes undergo lateral diffusion in lipid bilayers, resulting in weakened RET and turn-on fluorescence emission. We demonstrate that Chol-PEG-Cy5 enables rapid, stable and high-quality in vitro cell surface imaging in a variety of mammalian cells. Additionally, with the assistance of three-dimensional (3D) image reconstruction, we achieve for the first time the whole-mount in situ fluorescence imaging of the epidermal cell surfaces of live zebrafish embryos, which cannot be realized by conventional plasma membrane probes due to the presence of the surface-covering mucus barrier. This novel technique encourages us to track the cellular dynamics of the epidermis during embryonic development with 3D visualization. Moreover, we also develop a new method to evaluate the epidermal toxicity of nanomaterials (e.g., gold nanoparticles and graphene oxide nanosheets) toward zebrafish embryos using this fluorescent probe.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Ying Qiao
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics , School of Biological Science and Medical Engineering , Southeast University , Nanjing , 210096 , P. R. China .
| |
Collapse
|
28
|
A Novel Ruthenium-based Molecular Sensor to Detect Endothelial Nitric Oxide. Sci Rep 2019; 9:1720. [PMID: 30737439 PMCID: PMC6368587 DOI: 10.1038/s41598-019-39123-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a key regulator of endothelial cell and vascular function. The direct measurement of NO is challenging due to its short half-life, and as such surrogate measurements are typically used to approximate its relative concentrations. Here we demonstrate that ruthenium-based [Ru(bpy)2(dabpy)]2+ is a potent sensor for NO in its irreversible, NO-bound active form, [Ru(bpy)2(T-bpy)]2+. Using spectrophotometry we established the sensor’s ability to detect and measure soluble NO in a concentration-dependent manner in cell-free media. Endothelial cells cultured with acetylcholine or hydrogen peroxide to induce endogenous NO production showed modest increases of 7.3 ± 7.1% and 36.3 ± 25.0% respectively in fluorescence signal from baseline state, while addition of exogenous NO increased their fluorescence by 5.2-fold. The changes in fluorescence signal were proportionate and comparable against conventional NO assays. Rabbit blood samples immediately exposed to [Ru(bpy)2(dabpy)]2+ displayed 8-fold higher mean fluorescence, relative to blood without sensor. Approximately 14% of the observed signal was NO/NO adduct-specific. Optimal readings were obtained when sensor was added to freshly collected blood, remaining stable during subsequent freeze-thaw cycles. Clinical studies are now required to test the utility of [Ru(bpy)2(dabpy)]2+ as a sensor to detect changes in NO from human blood samples in cardiovascular health and disease.
Collapse
|
29
|
Huo Y, Miao J, Fang J, Shi H, Wang J, Guo W. Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chem Sci 2019; 10:145-152. [PMID: 30713625 PMCID: PMC6328002 DOI: 10.1039/c8sc03694b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs), constituting up to 50% of the solid tumor mass and commonly having a pro-tumoral M2 phenotype, are closely associated with decreased survival in patients. Based on the highly dynamic properties of macrophages, in recent years the repolarization of TAMs from pro-tumoral M2 phenotype to anti-tumoral M1 phenotype by various strategies has emerged as a promising cancer immunotherapy approach for improving cancer therapy. Herein, we present an aromatic secondary amine-functionalized Bodipy dye 1 and its mitochondria-targetable derivative Mito1 as fluorescent NO probes for discriminating M1 macrophages from M2 macrophages in terms of their difference in inducible NO synthase (iNOS) levels. The two probes possess the unique ability to simultaneously respond to two secondary oxides of NO, i.e., N2O3 and ONOO-, thus being more sensitive and reliable for reflecting intracellular NO than most of the existing fluorescent NO probes that usually respond to N2O3 only. With 1 as a representative, the discrimination between M1 and M2 macrophages, evaluation of the repolarization of TAMs from pro-tumoral M2 phenotype to anti-tumoral M1 phenotype, and visualization of NO communication during the immune-mediated phagocytosis of cancer cells by M1 macrophages have been realized. These results indicate that our probes should hold great potential for imaging applications in cancer immunotherapy studies and relevant anti-cancer drug screening.
Collapse
Affiliation(s)
- Yingying Huo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Junfeng Miao
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Junru Fang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Hu Shi
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Juanjuan Wang
- Scientific Instrument Center , Shanxi University , Taiyuan 030006 , China
| | - Wei Guo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| |
Collapse
|
30
|
Zhang Y, Zuo Y, Yang T, Gou Z, Wang X, Lin W. Novel fluorescent probe with a bridged Si–O–Si bond for the reversible detection of hypochlorous acid and biothiol amino acids in live cells and zebrafish. Analyst 2019; 144:5075-5080. [DOI: 10.1039/c9an00844f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report the design of a novel fluorescent probe consisting of a naphthalimide fluorophore and a silicone small molecule for the reversible detection of hypochlorous acid and biothiol amino acids.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Tingxin Yang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Xiaoni Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| |
Collapse
|
31
|
Wijesooriya CS, Nyamekye CKA, Smith EA. Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes. Anal Chem 2018; 91:425-440. [DOI: 10.1021/acs.analchem.8b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Charles K. A. Nyamekye
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|