1
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Zhang Z, Zhang L, Liu Y, Hu C, Liu Q. Sensitive DNA Detection using a Branched DNA as a Sensor Coupled with Hybridization Chain Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Liu Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yumin Liu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Cuixia Hu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| |
Collapse
|
3
|
Hu T, Ma C, Yan Y, Chen J. Detection of DNA Methyltransferase Activity via Fluorescence Resonance Energy Transfer and Exonuclease-Mediated Target Recycling. BIOSENSORS 2022; 12:bios12060395. [PMID: 35735543 PMCID: PMC9221148 DOI: 10.3390/bios12060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022]
Abstract
In this study, a sensitive method for detecting DNA methyltransferase (MTase) activity was developed by combining the effective fluorescence resonance energy transfer (FRET) of cationic conjugated polymers and exonuclease (Exo) III–mediated signal amplification. DNA adenine MTase targets the GATC sequence within a substrate and converts the adenine in this sequence into N6-methyladenine. In the method developed in this study, the methylated substrate is cleaved using Dpn I, whereby a single-stranded oligodeoxynucleotide (oligo) is released. Afterward, the oligo is hybridized to the 3ʹ protruding end of the F-DNA probe to form a double-stranded DNA, which is then digested by Exo III. Subsequently, due to weak electrostatic interactions, only a weak FRET signal is observed. The introduction of the Exo-III–mediated target-recycling reaction improved the sensitivity for detecting MTase. This detection method was found to be sensitive for MTase detection, with the lowest detection limit of 0.045 U/mL, and was also suitable for MTase-inhibitor screening, whereby such inhibitors can be identified for disease treatment.
Collapse
Affiliation(s)
- Tingting Hu
- School of Life Sciences, Central South University, Changsha 410013, China; (T.H.); (C.M.); (Y.Y.)
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China; (T.H.); (C.M.); (Y.Y.)
| | - Ying Yan
- School of Life Sciences, Central South University, Changsha 410013, China; (T.H.); (C.M.); (Y.Y.)
| | - Junxiang Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| |
Collapse
|
4
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
5
|
Sasaki Y, Asano K, Minamiki T, Zhang Z, Takizawa SY, Kubota R, Minami T. A Water-Gated Organic Thin-Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry 2020; 26:14525-14529. [PMID: 32803889 DOI: 10.1002/chem.202003529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 12/21/2022]
Abstract
This work reports the design of a highly sensitive solid-state sensor device based on a water-gated organic thin-film transistor (WG-OTFT) for the selective detection of herbicide glyphosate (GlyP) in water. A competitive assay among carboxylate-functionalized polythiophene, Cu2+ , and GlyP was employed as a sensing mechanism. Molecular recognition phenomena and electrical double layer (EDL) (at the polymer/water interface) originated from the field-effect worked cooperatively to amplify the sensitivity for GlyP. The limit of detection of WG-OTFT (0.26 ppm) was lower than that of a fluorescence sensor chip (0.95 ppm) which is the conventional sensing method. In contrast to the previously reported insulated molecular wires to block interchain interactions, molecular aggregates under the field-effect has shown to be effective for amplification of sensitivity through "intra"- and "inter"-molecular wire effects. The opposite strategy in this study could pave the way for fully utilizing the sensing properties of polymer-based solid-state sensor devices.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Koichiro Asano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
6
|
Gao T, Xing S, Xu M, Fu P, Yao J, Zhang X, Zhao Y, Zhao C. A peptide nucleic acid-regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochim Acta 2020; 187:375. [PMID: 32518969 DOI: 10.1007/s00604-020-04357-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
A convenient fluorometric method was developed for specific determination of DNA based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs). In this system, CDs that display lake blue fluorescence with excitation/emission maxima at 345/445 nm were used as fluorometric reporter, while AuNPs were used as fluorescence nanoquencher. A neutral PNA probe, which is designed to recognize the target DNA, was used as a coagulant to control the dispersion and aggregation of AuNPs. Without DNA, PNA can induce immediate AuNP aggregation, thus leading to the recovery of the FRET-quenched fluorescence emission of CDs. However, the addition of the complementary target DNA can protect AuNPs from being aggregated due to the formation of DNA/PNA complexes, which subsequently produces a high fluorescence quenching efficiency of CDs by dispersed AuNPs. Under optimized conditions, quantitative evaluation of DNA was achieved in a linear range of 5-100 nM with a detection limit of 0.21 nM. This method exhibited an excellent specificity towards fully matched DNA. In addition, the application of this assay for sensitive determination of DNA in cell lysate demonstrates its potential for bioanalysis and biodetection. Graphical abstract A simple fluorometric biosensor for specific detection of DNA was developed based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Tingting Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiechen Yao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|
7
|
Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Xu L, Wang Z, Wang R, Wang L, He X, Jiang H, Tang H, Cao D, Tang BZ. A Conjugated Polymeric Supramolecular Network with Aggregation‐Induced Emission Enhancement: An Efficient Light‐Harvesting System with an Ultrahigh Antenna Effect. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linxian Xu
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Zaiyu Wang
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| | - Rongrong Wang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Xuewen He
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| |
Collapse
|
9
|
Xu L, Wang Z, Wang R, Wang L, He X, Jiang H, Tang H, Cao D, Tang BZ. A Conjugated Polymeric Supramolecular Network with Aggregation‐Induced Emission Enhancement: An Efficient Light‐Harvesting System with an Ultrahigh Antenna Effect. Angew Chem Int Ed Engl 2019; 59:9908-9913. [DOI: 10.1002/anie.201907678] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Linxian Xu
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Zaiyu Wang
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| | - Rongrong Wang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Xuewen He
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and DevicesSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510641 China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong Hong Kong
| |
Collapse
|