1
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
2
|
Anbiaee G, Khoshbin Z, Zahraee H, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Exonuclease-based aptasensors: Promising for food safety and diagnostic aims. Talanta 2023; 259:124500. [PMID: 37001398 DOI: 10.1016/j.talanta.2023.124500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
As of today's requirement, developing cost-effective smart sensing tools with ultrahigh sensitivity for food safety insurance is of special importance. For this purpose, aptamer-based biosensors (aptasensors) powered by the superiorities of the recycling signal amplification strategies have been expanded especially. Target recycling supported by enzymes is an appealing approach for implementing signal amplification. As the supreme biocatalyst enzymes, exonucleases can inaugurate signal improvement by involving a single target in a process would result in appreciable repeating cycles of the cleavage of the phosphodiester bonds between the building blocks of the nucleic acid strands, and also, their terminals. Although there are diverse substances for catalyzing amplification strategies, including nanoparticles, carbon-based nanocomposites, and quantum dots (QDs), exonucleases are of superiority over them by simplifying the amplification process with no need for the complicated pre-treatment processes. The outstanding selectivity and great sensitivity of the aptasensors tuned by amplification potency of exonucleases nominate them as the promising sensing tools for label-free, ease-of-use, cost-effective, and real-time diagnosis of diverse targets. Here, we summarize the achievements and perspectives in the scientific branch of aptasensor design for the qualitative monitoring of diverse targets by cooperation of exonucleases with the conspicuous potential for the signal amplification. Finally, some results are expressed to provide a comprehensive viewpoint for developing novel nuclease-based aptasensors in the future.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022; 212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Iqbal
- Department of Electrical Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
4
|
Zhao X, Zhang X, Li Q, Song Y, Zhang J, Yang Y, Xia X, Han Q. Rapid determination of cadmium in Panax notoginseng using NCDs quantum carbon dots-aptamer fluorescence sensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Qu H, Chen M, Ge J, Zhang X, He S, Xiong F, Yan Q, Zhang S, Gong Z, Guo C, Wang F, Zeng Z, Li X, Li G, Xiong W, Wu X. A fluorescence strategy for circRNA quantification in tumor cells based on T7 nuclease-assisted cycling enzymatic amplification. Anal Chim Acta 2022; 1189:339210. [PMID: 34815051 DOI: 10.1016/j.aca.2021.339210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Circular Ribonucleic Acid (CircRNA) plays regulatory roles in many biological processes, such as tumors and metabolic diseases. Due to the fact that circRNA is more stable and conservative than linear RNA, circRNA has become a potential biomarker in early clinical diagnosis and biomedical research. Therefore, the quantification of circRNA expression level is of importance for understanding their functions and their applications for disease diagnosis and treatment. Nevertheless, due to the low abundance of circRNA, it is still a challenge for the analysis of circRNA in cells. Herein, we proposed a sensitive detection method for circRNA based on the T7 exonuclease-assisted cycling enzymatic amplification. The fluorescent sensor was constructed by a hairpin molecular beacon and T7 exonuclease. With the cycling enzymatic amplification process, this sensor achieved the limit of detection of 1 pM with a good linear correlation in the range of 0-100 pM (R2 = 0.9891) using circBART2.2 as a model. Furthermore, we applied the proposed method in the determination of circBART2.2 in cell lysates. The results demonstrated that this method has promising applications in early diagnosis of Epstein-Barr virus (EBV) infection-related diseases using circRNA as the biomarker.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shuyi He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Human Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Zhao J, Wu J, Wu X, Deng G, Liu Y, Lin F, Zhu L. A self-quenching fluorescence probe-mediated exponential isothermal amplification system for highly sensitive and specific detection of microRNAs. Chem Commun (Camb) 2021; 57:12599-12602. [PMID: 34786586 DOI: 10.1039/d1cc05522d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We designed an efficient self-quenching fluorescence probe and constructed this probe-mediated exponential isothermal amplification system for miRNA detection. Owing to the significant improvement in the detective signal-to-background ratio, a wide dynamic range of 9 orders of magnitude and a limit of detection as low as 0.08 aM can be easily achieved in a single step. Furthermore, benefiting from the additional advantages of high specificity and biocompatibility, the proposed method has been demonstrated to be capable of accurately quantifying miRNA biomarkers in serum, which will provide promising perspectives for clinical diagnosis.
Collapse
Affiliation(s)
- Jun Zhao
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaosong Wu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqing Deng
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Yong Liu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Francis Lin
- University of Manitoba, Winnipeg R3T2N2, Canada.
| | - Ling Zhu
- Center of Engineering Technology Research for Biomedical Optical Instrument, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
8
|
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021; 21:703-721. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accurate determination of the aberrantly expressed biomarkers such as human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), platelet-derived growth factor (PDGF), mucin 1 (MUC1), and vascular endothelial growth factor VEGF165 have played an essential role in the clinical management of the breast cancer. Assessment of these cancer-specific biomarkers has conventionally relied on time-taking methods like the enzyme-linked immunosorbent assay and immunohistochemistry. However, recent development in the aptamer-based diagnostics has allowed developing tools that may substitute the conventional means of biomarker assessment in breast cancer. Adopting the aptamer-based diagnostic tools (aptasensors) to clinical practices will depend on their analytical performance on clinical samples. AREAS COVERED In this review, we provide an overview of the analytical merits of HER2, CEA, PDGF, MUC1, and VEGF165 aptasensors. Scopus and Pubmed databases were searched for studies reporting aptasensor development for the listed breast cancer biomarkers in the past one decade. Linearity, detection limit, and response time are emphasized. EXPERT OPINION In our opinion, aptasensors have proven to be on a par with the antibody-based methods for detection of various breast cancer biomarkers. Though robust validation of the aptasensors on significant sample size is required, their ability to detect pathophysiological range of biomarkers suggest the possibility of future clinical adoption.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Nabab Khan
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon, India
| |
Collapse
|
9
|
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Aptamers are short single-stranded RNA or DNA molecules that can recognize a series of targets with high affinity and specificity. Known as "chemical antibodies", aptamers have many unique merits, including ease of chemical synthesis, high chemical stability, low molecular weight, lack of immunogenicity, and ease of modification and manipulation compared to their protein counterparts. Using aptamers as the recognition groups, fluorescent aptasensors provide exciting opportunities for sensitive detection and quantification of analytes. Herein, we give an overview on the recent development of aptamer-based fluorescent sensors for the detection of cancer biomarkers. Based on various nanostructured sensor designs, we extended our discussions on sensitivity, specificity and the potential applications of aptamer-based fluorescent sensors in early diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Suya Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaohua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongmin Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
10
|
Zheng Y, Chen J, Li Y, Xu Y, Chen L, Chen W, Liu A, Lin X, Weng S. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155. Anal Bioanal Chem 2021; 413:1605-1614. [PMID: 33515273 DOI: 10.1007/s00216-020-03121-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Effective and simultaneous monitoring of the abnormal expression of certain microRNAs (miRNAs), especially for miRNA-21 and miRNA-155, can indicate drug resistance in lung cancer. In this work, T7 exonuclease (T7 Exo)-assisted target recycling amplification coupled with the extensive fluorescence quenching of graphene oxide (GO) was designed for the simultaneous detection of miRNA-21 and miRNA-155 using FAM- and ROX-labeled single-strand DNA probes. Through this method, the variable emission intensities of FAM and ROX caused by the introduction of miRNA-21 and miRNA-155, respectively, were obtained with high sensitivity. The method exhibited excellent analytical performance for simultaneous detection of miRNA-21 and miRNA-155 without cross-interference. The linear range was from 0.005 nM to 5 nM over three orders of magnitude, with detection limits as low as 3.2 pM and 4.5 pM for miRNA-21 and miRNA-155, respectively. Furthermore, the recovery (92.49-103.67%) and relative standard deviation (RSD < 4.8%) of the standard addition test of miRNA-21 and miRNA-155 in human plasma suggested the potential for drug resistance warning in clinical practice via this simple strategy. A homogeneous T7 Exo-assisted signal amplification combined with GO quenching platform was developed for accurate, sensitive and simultaneous analysis of miRNA-21 and miRNA-155 for drug resistance warning in lung cancer. This simple method exhibited a wide linear range and low LODs for miR-21 and miR-155.
Collapse
Affiliation(s)
- Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jinyuan Chen
- The Central lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - You Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Pharmacy, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, 350008, Fujian, China
| | - Yichun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Li Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
11
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
He JH, Cheng YY, Zhang QQ, Liu H, Huang CZ. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity. Talanta 2020; 219:121276. [DOI: 10.1016/j.talanta.2020.121276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023]
|
13
|
Chen J, Fan T, Chen Y, Ye L, Zhang C, Liu F, Qin Y, Tan Y, Jiang Y. Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification. Biosens Bioelectron 2020; 169:112631. [PMID: 32980803 DOI: 10.1016/j.bios.2020.112631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Multi-microRNA (miRNA) detection would greatly facilitate early diagnosis of colorectal cancer (CRC). Here a convenient cascade isothermal amplification approach incorporating a G-quadruplex molecular beacon (G4MB) was established for achieving one-pot detection of multiple CRC miRNAs (miRNA-21, miRNA-92a, miRNA-31); this strategy incorporated a Bsu DNA polymerase (Bsu pol)-induced strand-displacement reaction and a Lambda exonuclease (λexo)-aided recycling reaction. In the presence of target miRNA, the G-rich stem structure was opened and became available for hybridization with the primer to initiate synthesis of Bsu pol-catalyzed double-stranded DNA (dsDNA) that displaced the miRNA target and released it, allowing it to participate in subsequent amplification cycles. Meanwhile, the dsDNA was gradually digested into fragments by λexo from the 5' phosphorylated end, releasing the newly synthesized DNA strand for participation in subsequent cycles that led to amplification of the fluorescent signal. This approach provided a low limit of detection (LOD) of zeptomolar-level, 85.8 zM, 77.6 zM, 78.9 zM for miRNA-21, miRNA-92a, miRNA-31, respectively. It could distinguish the mismatched targets and achieved three miRNA targets detection run in parallel in one-pot within 2 h. Thus, this fast, simple, and convenient strategy holds great promise as a clinical application for the detection of multiple miRNAs in clinical CRC samples.
Collapse
Affiliation(s)
- Junyue Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Lizhen Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
15
|
Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E130. [PMID: 30669634 PMCID: PMC6358776 DOI: 10.3390/nano9010130] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
At the onset of cancer, specific biomarkers get elevated or modified in body fluids or tissues. Early diagnosis of these biomarkers can greatly improve the survival rate or facilitate effective treatment with different modalities. Potential nanomaterial-based biosensing and bioimaging are the main techniques in nanodiagnostics because of their ultra-high selectivity and sensitivity. Emerging graphene, including two dimensional (2D) graphene films, three dimensional (3D) graphene architectures and graphene hybrids (GHs) nanostructures, are attracting increasing interests in the field of biosensing and bioimaging. Due to their remarkable optical, electronic, and thermal properties; chemical and mechanical stability; large surface area; and good biocompatibility, graphene-based nanomaterials are applicable alternatives as versatile platforms to detect biomarkers at the early stage of cancer. Moreover, currently, extensive applications of graphene-based biosensing and bioimaging has resulted in promising prospects in cancer diagnosis. We also hope this review will provide critical insights to inspire more exciting researches to address the current remaining problems in this field.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Huiling Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Ping Xiong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|