1
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
2
|
Farooq S, Xu L, Ullah S, Li J, Nie J, Ping J, Ying Y. Advancements and greenification potential of magnetic molecularly imprinted polymers for chromatographic analysis of veterinary drug residues in milk. Compr Rev Food Sci Food Saf 2024; 23:e13399. [PMID: 39072953 DOI: 10.1111/1541-4337.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Safat Ullah
- School of Medicine, Keele University, Keele, Staffordshire, UK
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Cao J, Wang M, Han Y, Wang M, Yan H. Hydrophilic molecularly imprinted resin-hexagonal boron nitride composite as a new adsorbent for selective extraction and determination of a carcinoid tumor biomarker in urine. Anal Chim Acta 2024; 1294:342289. [PMID: 38336412 DOI: 10.1016/j.aca.2024.342289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The detection of disease biomarkers in biological samples plays an important role in early diagnosis and treatment of carcinoid tumor. However, due to the complexity of biological samples and the extremely low concentration of disease biomarkers, sample pretreatment is still the bottleneck of achieving accurate quantitative determination. In this work, new hydrophilic molecularly imprinted resin-hexagonal boron nitride (HMIR-h-BN) composites were developed and used as a new solid phase extraction (SPE) adsorbent for selective detection of 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of carcinoid tumor, in urine. RESULTS Twenty-two types of HMIR-h-BN were successfully synthesized through growing hydrophilic molecularly imprinted resin on surface of activated two-dimensional h-BN nanosheets, and preparation parameters affecting the adsorption performance of HMIR-h-BN were investigated and optimized through adsorption experiments. HMIR-h-BN #19 (the ratio of resorcinol to hexamethylenetetramine: 6:3; the dosage of h-BN: 300 mg; the dosage of dummy template: 0.12 mmol; the imprinting time: 4 h) has demonstrated to be the optimal material for efficient separation and extraction of 5-HIAA. Combined with HPLC-UV, the limit of detection and the limit of quantification of 5-HIAA in real urine samples were 9.4 ng mL-1 and 31.3 ng mL-1, respectively, the coefficient of determination (R2) was 0.9996 in the linear range of 0.1-300 μg mL-1 and the relative recoveries ranged from 86.9 % to 97.7 % with RSD ≤5.1 %. Moreover, after being processed by HMIR-h-BN-SPE, there are no interferences from other peaks at the peak position of 5-HIAA. SIGNIFICANCE The HMIR-h-BN composite has been demonstrated to be capable of selective extraction of 5-HIAA from urine samples and have a significant purification effect. Based on the established HMIR-h-BN-SPE-HPLC-UV method, accurate quantitative determination of 5-HIAA in urine samples was achieved, which is expected to be applied in the early diagnostic of carcinoid tumor.
Collapse
Affiliation(s)
- Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding, 071002, China
| | - Mingwei Wang
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding, 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Science, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
He X, Ji W, Xing S, Feng Z, Li H, Lu S, Du K, Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition. Talanta 2024; 268:125283. [PMID: 37857111 DOI: 10.1016/j.talanta.2023.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Molecular imprinting technology (MIT) has become a promising recognition technology in various fields due to its specificity, high efficiency, stability and eco-friendliness in the recognition of target. Molecularly imprinted polymers (MIPs), known as 'artificial receptors', are shown similar properties to natural receptors as a biomimetic material. The selectivity of recognition for targets can be greatly improved when MIPs are introduced into sensors, as known that MIPs, are suitable for the pretreatment and analysis of trace substances in complex matrix samples. At present, various sensors has been developed by the combination with MIPs for detecting and identifying trace compounds, biological macromolecules or other substances, such as optical, electrochemical and piezoelectric sensors. Smart phones, with their built-in sensors and powerful digital imaging capabilities, provide a unique platform for the needs of portability and instant detection. MIP sensors based on smart phones are expected to become a new research direction in the future. This review discusses the latest applications of MIP sensors in the field of detection and recognition in recent years, summarizes the frontier progress of MIP sensor research based on smart phones in the past two years, and points out the challenges, limitations and future development prospects.
Collapse
Affiliation(s)
- Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Sijia Xing
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhixuan Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongyan Li
- Tianjin JOYSTAR Technology Co., Ltd, No.453, Hengshan Road, Modern Industrial Park, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Shanshan Lu
- BaiyangDian Basin Ecological Environment Monitoring Center, Baoding, Hebei, 071000, China
| | - Kunze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
5
|
Surapong N, Pongpinyo P, Santaladchaiyakit Y, Burakham R. A biobased magnetic dual-dummy-template molecularly imprinted polymer using a deep eutectic solvent as a coporogen for highly selective enrichment of organophosphates. Food Chem 2023; 418:136045. [PMID: 36996646 DOI: 10.1016/j.foodchem.2023.136045] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
An eco-friendly magnetic dual-dummy-template molecularly imprinted polymer (MDDMIP) was prepared by a "one-pot" green synthesis using mixed-valence iron hydroxide as the magnetic material, a deep eutectic solvent as the coporogen, and caffeic acid and glutamic acid as binary monomers. The adsorption properties toward organophosphorus pesticides (OPPs) were investigated. High adsorption capacities (269.65-304.93 mg g-1), quick adsorption times (20 s), and high imprinting factors (2.28-3.83) were obtained. The proposed MDDMIP was utilized for magnetic solid phase extraction (MSPE) of OPPs prior to quantification by high performance liquid chromatography (HPLC). The developed method exhibited outstanding linearity (0.05-500 μg L-1), low detection limits (0.003-0.015 μg L-1), and excellent enrichment factors (940-1310 folds). The MSPE-HPLC method was successfully applied for the detection of OPPs in vegetable, fruit, and grain samples with acceptable recoveries (80-119%). This method is a good potential method for the analysis of pesticide residues in complex matrices.
Collapse
|
6
|
Yang Y, Shen X. Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules 2022; 27:7355. [PMID: 36364181 PMCID: PMC9653670 DOI: 10.3390/molecules27217355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
The separation and detection of flavonoids from various natural products have attracted increasing attention in the field of natural product research and development. Depending on the high specificity of molecularly imprinted polymers (MIPs), MIPs are proposed as efficient adsorbents for the selective extraction and separation of flavonoids from complex samples. At present, a comprehensive review article to summarize the separation and purification of flavonoids using molecular imprinting, and the employment of MIP-based sensors for the detection of flavonoids is still lacking. Here, we reviewed the general preparation methods of MIPs towards flavonoids, including bulk polymerization, precipitation polymerization, surface imprinting and emulsion polymerization. Additionally, a variety of applications of MIPs towards flavonoids are summarized, such as the different forms of MIP-based solid phase extraction (SPE) for the separation of flavonoids, and the MIP-based sensors for the detection of flavonoids. Finally, we discussed the advantages and disadvantages of the current synthetic methods for preparing MIPs of flavonoids and prospected the approaches for detecting flavonoids in the future. The purpose of this review is to provide helpful suggestions for the novel preparation methods of MIPs for the extraction of flavonoids and emerging applications of MIPs for the detection of flavonoids from natural products and biological samples.
Collapse
Affiliation(s)
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
7
|
Shen D, Yan Y, Hu X, Zhong Y, Li Z, Guo Y, Xie L, Yuan D. Deep-Eutectic-Solvent-Based Mesoporous Molecularly Imprinted Polymers for Purification of Gallic Acid from Camellia spp. Fruit Shells. Int J Mol Sci 2022; 23:ijms232113089. [PMID: 36361874 PMCID: PMC9658731 DOI: 10.3390/ijms232113089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
To produce antioxidant substances from agricultural waste Camellia spp. fruit shells before their further utilization, gallic acid from five kinds of Camellia spp. fruit shells was separated on specific recognition by deep eutectic solvent molecularly imprinted polymers (DES@MIPs), which were prepared by bulk polymerization using gallic acid as the template and deep eutectic solvents (α-methylacrylic acid and choline chloride) as functional monomers. The optimized DES@MIPs were characterized by scanning electron microscopy, particle size analysis, nitrogen sorption porosimetry, elemental analysis, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. The adsorptive behavior of gallic acid on DES@MIPs was also investigated. The results indicated that DES@MIPs were successfully prepared as mesoporous materials with average pore diameter of 9.65 nm and total pore volume of 0.315 cm3 g−1, and the adsorption behavior was multilayer adsorption and pseudo-second-order kinetics with the saturation adsorptive capacity of gallic acid reaching 0.7110 mmol g−1. Although the content of gallic acid in five fruit shells was quite different, the purification recovery of gallic acid was high, ranging from 87.85–96.75% with a purity over 80%. Thus, the purification of gallic acid from Camellia spp. fruit shells could be realized feasibly using DES@MIPs with favorable economic and environmental benefits.
Collapse
Affiliation(s)
- Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Yan
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopeng Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yujun Zhong
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiyang Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| |
Collapse
|
8
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
9
|
|
10
|
Molecular imprinting with deep eutectic solvents: Synthesis, applications, their significance, and benefits. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Preparation and Recognition Properties of Molecularly Imprinted Nanofiber Membrane of Chrysin. Polymers (Basel) 2022; 14:polym14122398. [PMID: 35745975 PMCID: PMC9229621 DOI: 10.3390/polym14122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
The separation and extraction of chrysin from active ingredients of natural products are of great significance, but the existing separation and extraction methods have certain drawbacks. Here, chrysin molecularly imprinted nanofiber membranes (MINMs) were prepared by means of electrospinning using chrysin as a template and polyvinyl alcohol and natural renewable resource rosin ester as membrane materials, which were used for the separation of active components in the natural product. The MINM was examined using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption performance, adsorption kinetics, adsorption selectivity, and reusability of the MINM were investigated in static adsorption experiments. The analysis results show that the MINM was successfully prepared with good morphology and thermal stability. The MINM has a good adsorption capacity for chrysin, showing fast adsorption kinetics, and the maximum adsorption capacity was 127.5 mg·g−1, conforming to the Langmuir isotherm model and pseudo-second-order kinetic model. In addition, the MINM exhibited good selectivity and excellent reusability. Therefore, the MINM proposed in this paper is a promising material for the adsorption and separation of chrysin.
Collapse
|
12
|
Pu WR, An DY, Wang Y, Zhang X, Huang YP, Liu ZS. Improving identification of molecularly imprinted monolith to benzoylated modified peptides by a deep eutectic solvents monomer-induced cooperation. Anal Chim Acta 2022; 1204:339697. [DOI: 10.1016/j.aca.2022.339697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/27/2022]
|
13
|
Combinations of Nanomaterials and Deep Eutectic Solvents as Innovative Materials in Food Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of nanotechnology has been an important tool in the development of sustainable analytical procedures which have been developed in agreement with the principles of sustainability and green chemistry. In this sense, such materials have been widely applied in the area of food analysis providing important improvements in terms of specificity, efficiency, and simplicity. Besides, in recent years, the discovery of other innovative materials developed in the framework of green chemistry, such as deep eutectic solvents (DESs), has gained special attention from the scientific community for whom the design and successful application of sustainable strategies is a huge challenge. In this sense, the recent combination of nanomaterials and DESs have resulted in the performance of suitable approaches in the area of food sciences bringing about interesting alternatives in food analysis. The aim of this review article is to revise the application of nanomaterials combined with DESs in food analysis, paying special attention to the synthesis and characterization steps, as well as to the performance of the most recent approaches developed in the field for the analysis of food commodities.
Collapse
|
14
|
|
15
|
Zuo J, Geng S, Kong Y, Ma P, Fan Z, Zhang Y, Dong A. Current Progress in Natural Deep Eutectic Solvents for the Extraction of Active Components from Plants. Crit Rev Anal Chem 2021; 53:177-198. [PMID: 34324395 DOI: 10.1080/10408347.2021.1946659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the last decade, natural deep eutectic solvents (NADESs) have gained more and more attention due to their green, convenient preparation, low toxicity and biodegradability. It is widely used in various fields, especially in the extraction of active components from plants, formed by the combination of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) at a certain condition. In this article, six preparation methods of NADESs were summarized and the interactions that occur in the eutectic behavior of NADES including hydrogen bonding, electrostatic interaction and van der Waals force were also reviewed. What is more, its significant extraction capacity on flavonoids, phenols, alkaloids and plant pigments endows its extensive applications in the extraction of active components from medicinal plants. Extraction factors including solvents properties (viscosity, carbon chain length, number of hydroxyl groups), extraction condition (water content, extraction temperature, extraction time, solid-liquid ratio), extraction method and recycling method were discussed. In addition, NADESs can also be combined with other technologies, like molecular imprinting, monolithic column, to achieve efficient and specific extraction of active ingredients. Further systematic studies on the biodegradability and biotoxicity are put forward to be urgent.
Collapse
Affiliation(s)
- Jiale Zuo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Shuqin Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Zhaosheng Fan
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co.,Ltd, Tongzhou Dis, Beijing, China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| |
Collapse
|
16
|
Preparation of amino-functionalized covalent organic framework modified Fe3O4 nanoparticles for the selective enrichment of flavonoid glycosides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Preparation of Magnetic Molecularly Imprinted Polymers for Selective Recognition and Determination of Clenbuterol in Pork Samples. J CHEM-NY 2020. [DOI: 10.1155/2020/8820262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetic molecularly imprinted polymer (MMIP) was successfully synthesized with acrylamide as a functional monomer and clenbuterol (CLB) as a template molecule. The synthesized MMIPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectrometry (FT-IR). MMIPs were used to identify and bind CLB as a solid phase extraction material. The experiment data were fitted by the Freundlich isotherm adsorption model. The results show that MMIPs have excellent recognition performance for CLB. MMIPs were successfully applied as adsorbents to preconcentrated CLB in pork samples and detected by HPLC with UV. The limit of detection (LOD) and limit of quantification (LOQ) were 4.27 μg/L and 14.2 μg/L, respectively. The spiked recovery rates ranged from 94.44% to 102.29%. Therefore, the prepared MMIPs can be used for selective preconcentration of CLB content in complex animal-derived food samples.
Collapse
|
18
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
19
|
Yin SJ, Zhao J, Yang FQ. Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis. J Pharm Biomed Anal 2020; 192:113675. [PMID: 33099113 DOI: 10.1016/j.jpba.2020.113675] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/01/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022]
Abstract
Sample preparation such as isolation and pre-concentration is a crucial step for the phytochemical analysis. Magnetic solid-phase extraction (MSPE) has received considerable attention, mainly due to its phase separation more conveniently by facile magnetic decantation as compared to traditional SPE. This review focused on the recent applications of MSPE in sample preparation for the analysis of phytochemical compounds in plants, biological samples and Chinese herbal preparations. In addition, the enzymes immobilized on the magnetic materials and used for the biospecific extraction of enzyme inhibitors were also discussed. The information summarized in this article may provide a reference to the further applications of MSPE in phytochemical analysis.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
20
|
Liu Z, Wang Y, Xu F, Wei X, Chen J, Li H, He X, Zhou Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal Chim Acta 2020; 1129:49-59. [DOI: 10.1016/j.aca.2020.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
|
21
|
Wang D, Luo X, Huang Y, Wang M, Xia Z. Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Development and applications of deep eutectic solvent derived functional materials in chromatographic separation. J Sep Sci 2020; 44:1098-1121. [DOI: 10.1002/jssc.202000523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023]
|
23
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhang JW, He JY, Wang CZ, Yang FQ, Zhou LD, Zhang QH, Xia ZN, Yuan CS. Simultaneous extraction of several targets by using non-toxic dual template molecularly imprinted polymers in vivo and in vitro. Talanta 2020; 219:121283. [PMID: 32887173 DOI: 10.1016/j.talanta.2020.121283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023]
Abstract
In this report, a non-toxic Dual Template Molecularly Imprinted Polymers (DMIPs) was synthesized with quercetin and schisandrin b as template molecules, using deep-eutectic solvents as functional monomers for the first time. The DMIPs were used to efficiently and simultaneously enrich quercetin and schisandrin b from the mixed crude extracts of penthorum and schisandra. The results indicated that the DMIPs exhibited rapid adsorption kinetics (80 min for adsorption equilibrium) and high selectivity. The largest adsorbing capacities to quercetin and schisandrin b were 23.58 mg/g and 41.64 mg/g, respectively. After presaturation with quercetin and schisandrin b, the nontoxic saturated DMIPs were fed to the mice. Blood samples of the mice were taken and both quercetin and schisandrin b were successfully detected. The pharmacokinetics of quercetin and schisandrin b were similar to reports in the literature where mice were directly fed with botanicals. Our study provides a reliable protocol such that DMIPs can be used to separate and enrich several target molecules simultaneously from complex biological systems. Our findings suggested that the DMIPs have potential application as a drug delivery system of compound herbal formulas.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
25
|
Tang W, An Y, Row KH. Recoverable deep eutectic solvent-based aniline organic pollutant separation technology using choline salt as adsorbent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112910] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Zhang K, Li S, Wang Y, Fan J, Zhu G. Air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent for the analysis of ultraviolet filters in water samples by high performance liquid chromatography with the aid of response surface methodology. J Chromatogr A 2020; 1618:460876. [PMID: 31980262 DOI: 10.1016/j.chroma.2020.460876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
For this work, a novel air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent (AA-LLME-SFDES), coupled with a high performance liquid chromatography (HPLC) method was developed for the detection of benzophenone and salicylate ultraviolet filters in water samples. Three types of fatty acid-based hydrophobic deep eutectic solvents (DESs) with low viscosity, low-density, and melting point close to room temperature were prepared and employed as extraction solvents. This air-assisted liquid-liquid microextraction was carried out in a glass centrifuge tube. Subsequently, the glass tube was introduced into ice-water bath and held for 3 min, during which the upper DES phase was solidified. The water phase was easily extracted using a syringe equipped with a long needle, and later, the glass tube was removed from ice-water bath. The solidified DES phase was immediately melted at room temperature and used for HPLC analysis. The response surface methodology was employed to optimize some influencing parameters such as the volume of the extraction solvent, the pH value of sample solution, the number of extraction cycles, and the addition of salt. A quadratic model, namely a central composite design, was used to replace the conventional single factor analysis. It was found that under optimal conditions, the limits of determination and quantification were 0.045-0.54 µg L-1 and 0.15-2.0 µg L-1, respectively. The relative standard deviations for inter-day (n = 5) and intra-day (n = 5) precision were ≤ 4.2%, whereas the enrichment factors for the ultraviolet filters were obtained from 41 to 50. Furthermore, this novel method was successfully employed for the detection of benzophenone and salicylate ultraviolet filters from real water samples. The recoveries ranged from 87.5% to 105.8%, whereas the RSDs were lower than 3.6%.
Collapse
Affiliation(s)
- Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Shuangying Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunhe Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
27
|
Solid-Phase Extraction of Catechins from Green Tea with Deep Eutectic Solvent Immobilized Magnetic Molybdenum Disulfide Molecularly Imprinted Polymer. Molecules 2020; 25:molecules25020280. [PMID: 31936680 PMCID: PMC7024266 DOI: 10.3390/molecules25020280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
A type of molecular-imprinted polymer with magnetic molybdenum disulfide as a base and deep eutectic solvent as a functional monomer (Fe3O4@MoS2@DES-MIP) was prepared with surface molecular imprinting method. It was applied as the adsorbent for the selective recognition and separation of (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate in green tea in the process of magnetic solid-phase extraction (MSPE) combined with high-performance liquid chromatography (HPLC). The structure of Fe3O4@MoS2@DES-MIP was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The adsorption properties and selective recognition ability on (-)-epigallocatechin gallate and the other four structural analogues were examined and compared. The results show that the polymer has excellent selective recognition ability for (-)-epigallocatechin gallate, and its adsorption capacity was much higher than that of structural analogues. The Fe3O4@MoS2@DES-MIP not only has the special recognition ability to template a molecule, but also can be separated by magnets with high separation efficiency and can be used in MSPE.
Collapse
|
28
|
Li X, Row KH. Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water. Analyst 2020; 145:2958-2965. [DOI: 10.1039/c9an02556a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designed deep eutectic solvents was applied to preparation of levofloxacin-imprinted nanoparticles as functional monomer. The nanoparticles using for the selective removal of levofloxacin pollutants from a natural environmental system.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| |
Collapse
|
29
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
30
|
Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Mikrochim Acta 2019; 186:753. [DOI: 10.1007/s00604-019-3885-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023]
|
31
|
Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194169] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present review article attempts to summarize the use of deep eutectic solvents in the extraction of flavonoids, one of the most important classes of plant secondary metabolites. All of the applications reviewed have reported success in isolation and extraction of the target compounds; competitive, if not superior, extraction rates compared with conventional solvents; and satisfactory behavior of the extract in the latter applications (such as direct analysis, synthesis, or catalysis), wherever attempted.
Collapse
|