1
|
Stutzman JR, Hutchins PD, Bain RM. Online Bipolar Dual Spray for the Charge State Reduction and Characterization of Complex Synthetic Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2840-2848. [PMID: 38053368 DOI: 10.1021/jasms.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Charge reduction mass spectrometry (CR/MS) hyphenated to liquid chromatography (LC) couples liquid-phase compound separation and mass spectral decompression to resolve and characterize multicomponent systems. LC/CR/MS has proven to be effective for complex mixture analysis, particularly synthetic polymers. A newer charge manipulation approach called bipolar dual spray has previously been demonstrated to reduce the observed charge state distribution of ammoniated polyethene glycol. In this approach, two electrospray emitters, in close proximity and of opposite polarity, fuse droplets from their electrospray plumes, which allows the subsequent chemistry. In this work, we investigate the ability of bipolar dual spray to reduce the charge of synthetic polyols, thereby simplifying complex mixture analysis and generating new compositional information only available through the coupling of charge reduction with LC/MS analysis. This work also represents the first demonstration of online charge reduction via dual spray. Polyethylene glycol (PEG) 7.2K subjected to LC/MS with dual spray reduced the average charge state from 8.2+ to 4.4+. LC/MS with dual spray was also applied to the characterization of an end-group-modified PEG 10K (i.e., aminated) containing several reaction impurities. This approach allowed for the identification of low-level starting material, tosylated PEG, and PEG mono(amine), where both LC/MS and direct infusion dual spray did not detect the impurities. Overall, the results demonstrated that bipolar dual spray can be incorporated into an LC/MS analysis and affords the ability to reduce the charge state distribution of PEG cations, decompress the m/z axis, lower spectra complexity, and enable/simplify data interpretation.
Collapse
Affiliation(s)
- John R Stutzman
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| | - Paul D Hutchins
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| | - Ryan M Bain
- Analytical Sciences, Dow Inc., Midland, Michigan 48640, United States
| |
Collapse
|
2
|
Irifune R, Ishikawa T, Kitagawa S, Iiguni Y, Ohtani H. Analysis of polyisoprene oligomers via in situ silver nanoparticle formation on thin-layer chromatography plate using matrix-assisted laser-induced desorption/ionization mass spectrometry. ANAL SCI 2023; 39:1823-1827. [PMID: 37668881 DOI: 10.1007/s44211-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
The direct mass spectrometry (MS) detection of polyisoprene (PI) oligomers on a thin-layer chromatography (TLC) plate using matrix-assisted laser-induced desorption/ionization (MALDI) with silver trifluoroacetate as the cationization reagent was investigated. The spots of PI oligomers and silver trifluoroacetate on the TLC plate resulted in brown materials after UV laser irradiation. It was suggested that silver trifluoroacetate yielded Ag nanoparticles as brown materials after heating via laser irradiation. The nanoparticles behaved as an inorganic matrix and a source of Ag+ adduct in the analysis of PI oligomers. The use of organic matrices together with silver trifluoroacetate reduced the signal intensity of PI oligomers on MALDI-MS on a TLC plate. The separation of PI oligomers (polymerization degree, n = 5-11) by TLC resulted in a single elliptical spot without a clear separation after the chromatographic procedure. However, in MS imaging, differences in migration lengths based on degrees of polymerization were clearly observed and the degrees of polymerization were identified without comparison with standards.
Collapse
Affiliation(s)
- Ryota Irifune
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Takanao Ishikawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan.
| | - Yoshinori Iiguni
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| |
Collapse
|
3
|
Ozeki Y, Kitagawa S, Ohtani H, Kondo Y, Shinada H. Characterization of styrene/methyl methacrylate/n-butyl acrylate terpolymer with Kendrick mass defect analysis in electrospray ionization-ion mobility spectrometry-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9455. [PMID: 36504460 DOI: 10.1002/rcm.9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Synthesis of copolymer is one of the major approaches to establish sophisticated polymers. In copolymer analysis in mass spectrometry (MS), an increase in the number of monomer unit species and/or the polymer molecular weight results in complex mass spectra, and a method is required to solve this problem. METHODS In this study, electrospray ionization-ion mobility spectrometry-mass spectrometry was employed to analyze styrene/methyl methacrylate/n-butyl acrylate (St/MMA/nBA) terpolymers via Kendrick mass defect (KMD) analysis. An expanded Fourier transform-based noise reduction method for the copolymer was developed to improve the decrease in the signal/noise ratio observed in the higher m/z region. RESULTS Low-mass terpolymers (0.7 kDa) were identified by comparing the observed and theoretical results using a two-dimensional KMD plot. For the 1.5 kDa terpolymer, the signal overlap, of which KMD value was not matched with the theoretical one, was interpreted by the shift from the theoretical value in the KMD plot. For the 3.0 kDa terpolymers, the compositional candidates were determined by the prediction based on the compositional information of low-mass terpolymers previously analyzed. The 4.5 kDa terpolymer was interpreted after the expanded noise filtering. CONCLUSIONS The terpolymers, whose molecular weight was up to 4.5 kDa, were successfully characterized at a molecular level. The dependency of the St/MMA/nBA composition on molecular weight was observed; that is, the nBA content decreased with an increase in the molecular weight.
Collapse
Affiliation(s)
- Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Yosuke Kondo
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | - Hiroko Shinada
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| |
Collapse
|
4
|
Omae M, Ozeki Y, Kitagawa S, Ohtani H. End group analysis of poly(methylmethacrylate)s using the most abundant peak in electrospray ionization-ion mobility spectrometry-tandem mass spectrometry and Fourier transform-based noise filtering. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9176. [PMID: 34355832 DOI: 10.1002/rcm.9176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE We recently developed the characterization method for synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry, in which the m/z value of the most abundant peak was used for characterization. However, the identification of the most abundant peak from the isotopic peaks was often difficult due to the background noise. METHODS Here, we employed a noise reduction method using Fourier transform (FT) filtering. In the power spectrum obtained using FT of the mass spectrum of the multiple charged analytes, the significant signals in the low-frequency region and at frequency z are observed for the analytes of z charges. When the signals in both regions were used for inversed FT (i.e., the signals in other regions were zero padded), a noise-filtered mass spectrum was obtained. RESULTS In the analysis of poly(methylmethacrylate)s weighing 13-17 kDa, mass spectra without noise filtering with relatively high-intensity noise (than signal) were complicated to identify the most abundant peak. On the contrary, the most abundant peak was clearly identified from the mass spectra after FT-based noise filtering, and end group composition was estimated successfully. CONCLUSIONS The proposed FT-based noise filtering for the mass spectrum is effective to characterize multiply charged synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mizuki Omae
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
5
|
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. Int J Mol Sci 2021; 22:ijms22020501. [PMID: 33419082 PMCID: PMC7825406 DOI: 10.3390/ijms22020501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.
Collapse
|
6
|
Knol WC, Pirok BWJ, Peters RAH. Detection challenges in quantitative polymer analysis by liquid chromatography. J Sep Sci 2020; 44:63-87. [PMID: 32935906 PMCID: PMC7821191 DOI: 10.1002/jssc.202000768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Accurate quantification of polymer distributions is one of the main challenges in polymer analysis by liquid chromatography. The response of contemporary detectors is typically influenced by compositional features such as molecular weight, chain composition, end groups, and branching. This renders the accurate quantification of complex polymers of which there are no standards available, extremely challenging. Moreover, any (programmed) change in mobile-phase composition may further limit the applicability of detection techniques. Current methods often rely on refractive index detection, which is not accurate when dealing with complex samples as the refractive-index increment is often unknown. We review current and emerging detection methods in liquid chromatography with the aim of identifying detectors, which can be applied to the quantitative analysis of complex polymers.
Collapse
Affiliation(s)
- Wouter C Knol
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands.,DSM Resins & Functional Materials, Analytical Technology Centre, Waalwijk, The Netherlands
| |
Collapse
|
7
|
Charles L, Chendo C, Poyer S. Ion mobility spectrometry - Mass spectrometry coupling for synthetic polymers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8624. [PMID: 31658387 DOI: 10.1002/rcm.8624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high-performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post-ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas-phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS-MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Christophe Chendo
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Salomé Poyer
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| |
Collapse
|
8
|
Petroff JT, Tong A, Chen LJ, Dekoster GT, Khan F, Abramson J, Frieden C, Cheng WWL. Charge Reduction of Membrane Proteins in Native Mass Spectrometry Using Alkali Metal Acetate Salts. Anal Chem 2020; 92:6622-6630. [PMID: 32250604 DOI: 10.1021/acs.analchem.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.
Collapse
Affiliation(s)
| | | | | | | | - Farha Khan
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
9
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
10
|
Fouquet TNJ. The Kendrick analysis for polymer mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:933-947. [PMID: 31758605 DOI: 10.1002/jms.4480] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/16/2023]
Abstract
The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60-year-old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two-dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one-dimensional mass spectrum. This special feature article reports on an up-to-date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.
Collapse
Affiliation(s)
- Thierry N J Fouquet
- Research Institute for Sustainable Chemistry (RISC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|