1
|
Wang L, Wang L, Liu X, Lin X, Fei T, Zhang W. Seaweeds-derived proteins and peptides: preparation, virtual screening, health-promoting effects, and industry applications. Crit Rev Food Sci Nutr 2025:1-28. [PMID: 39812419 DOI: 10.1080/10408398.2025.2449596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides. Additionally, it elucidates their diverse biological activities, mechanisms of action, and industrial applications. Enzymatic hydrolysis appears as the most effective method for preparing functional peptides from seaweeds. Computational virtual screening has also proven to be a valuable strategy for assessing the nature of the peptides. Seaweeds-derived proteins and peptides offer numerous health benefits, including alleviation of oxidative stress, anti-diabetic, anti-hypertensive, anti-inflammatory, anti-obesity, anti-cancer, and anti-microbial activities. Studies indicate that proteins hydrolysates and peptides derived from seaweeds with low molecular weight and aromatic and/or hydrophobic amino acids are particularly significant in contributing to these diverse bio-activities. Furthermore, seaweeds-derived proteins and peptides hold great promise for industrial applications owing to the broad spectrum of bio-functional effects. They can be used as active ingredients in food products or pharmaceuticals for disease prevention and treatment, and as food preservatives, potentially with fewer side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Lang Wang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xiaoze Liu
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, P.R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, P.R. China
| |
Collapse
|
2
|
Aayush A, Darji S, Estes KM, Yeh E, Thompson DH. Development of an Elastin-like Polypeptide-Based Nucleic Acid Delivery System Targeted to EGFR+ Bladder Cancer Cells Using a Layer-by-Layer Approach. Biomacromolecules 2024; 25:5729-5744. [PMID: 39185801 PMCID: PMC11388462 DOI: 10.1021/acs.biomac.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Nucleic acid (NA)-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level. This work demonstrates a versatile elastin-like polypeptide (ELP) carrier system using a layer-by-layer (LbL) formulation approach that delivers NA cargos ranging in size from siRNA to plasmids. The components of the system can be reconfigured to modulate the biochemical and biophysical characteristics of the carrier for engaging the unique features of the biological target. We show the physical characterization and biological performance of LbL ELP nucleic acid nanoparticles (LENNs) in murine and human bladder tumor cell lines. Targeting bladder tumors is difficult owing to the constant influx of urine into the bladder, leading to low contact times (typically <2 h) for therapeutic agents delivered via intravesical instillation. LENN complexes bind to bladder tumor cells within 30 min and become rapidly internalized to release their NA cargo within 60 min. Our data show that a readily adaptable NA-delivery system has been created that is flexible in its targeting ability, cargo size, and disassembly kinetics. This approach provides an alternative path to either lipid nanoparticle formulations that suffer from inefficiency and physicochemical instability or viral vectors that are plagued by manufacturing and immune rejection challenges. This agile ELP-based nanocarrier provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible, and highly tunable vehicle capable of targeting cells via engagement with overexpressed cell surface receptors.
Collapse
Affiliation(s)
- Aayush Aayush
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Saloni Darji
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Kiera M. Estes
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - Emily Yeh
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| | - David H. Thompson
- Department of Chemistry &
Purdue Institute for Cancer Research, Purdue
University, Bindley Bioscience Center, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Darji S, Aayush A, Estes KM, Strock JD, Thompson DH. Unravelling the Mechanism of Elastin-like Polypeptide-Enzyme Fusion Stabilization in Organic Solvents. Biomacromolecules 2024; 25:272-281. [PMID: 38118170 DOI: 10.1021/acs.biomac.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Elastin-like polypeptides (ELP) are a class of materials that are widely used as purification tags and in potential therapeutic applications. We have used the hydrophobic nature of ELP to extract them into organic solvents and precipitate them to obtain highly pure materials. Although many different types of ELP have been rapidly purified in this manner, the underlying mechanism for this process and its ability to retain functional proteins within organic phase-rich media has been unclear. A cleavable ELP-Intein construct fused with the enzyme chorismate mutase (ELP-I-Cm2) was used to better understand the organic solvent extraction process for ELP and the factors impacting the retention of enzyme activity. Our extraction studies indicated that a cell lysis step was essential to stabilize the ELP-I-Cm2 in the organic phase, prevent intein cleavage, and extract the fusion protein with high efficiency and retained activity. Circular dichroism and infrared spectroscopic characterization of ELP-I-Cm2 in organic solvents and aqueous solutions of the extracted and precipitated material indicated that the ELP secondary structure was retained in both environments. Atomic force microscopy and negative stain transmission electron microscopy imaging of ELP-I-Cm2 in organic solvents revealed highly regular circular features that were ∼50 nm in diameter, in contrast to larger (>100 nm) irregular features found in aqueous solutions. Since reverse micelles have often been used in catalytic processes, we evaluated the enzymatic activity of the ELP-I-Cm2 reversed micelles in different organic solvent mixtures and found that Cm2-mediated reactions in organic media were of comparable rate and efficiency to those in aqueous media. Based on these findings, we report an exciting new opportunity for ELP-enzyme fusion applications by exploiting their ability to form catalytically active reverse micelles in organic media.
Collapse
Affiliation(s)
- Saloni Darji
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aayush Aayush
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kiera M Estes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jocie D Strock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Lee EH, Lee JN, Ha YS, Chung JW, Yoon BH, Jeon M, Kim HT, Oh SH, Kwon TG, Kim BS, Chun SY. Perirenal adipose tissues as a human elastin source, and optimize the extraction process. J Biomater Appl 2023; 37:1054-1070. [PMID: 36547265 DOI: 10.1177/08853282221146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elastin is very rarely repaired extracellular matrix (ECM) in physiological condition. The commercial human elastin for exogenous medical treatment is very expensive, and has a potential for disease transmission. Animal-origin elastin is relatively low price, but has concerns for xenogeneic immune responses. Considering cost and safety, we focused on the perirenal adipose tissue, donated from healthy young people via donor nephrectomy. Until now, all of the perirenal adipose tissues are discarded as a medical waste after kidney transplantation. In the present study, we applied perirenal adipose tissues as the source of human elastin, and optimized the extraction process to get high purified and quantified elastin. Through pre-processing step, the delipidated and decellularized ECM was prepared. Next, with four different elastin extraction process (acidic solvents, neutral salt, organic solvents or hot alkali method), elastin was extracted, and the concentration of amino acid between each product was compared, and bright-field/electron microscopy, Fourier transform infrared (FT-IR) spectroscopy and cytotoxicity analysis were also performed. As controls, bovine neck ligament-derived and human skin-derived elastin were used. Among the elastin extraction methods, the hot alkali insoluble product showed (1) relatively high positive area of Verhoeff's and low Masson's trichrome stain, (2) 64.24% purity, 159.29 mg/g quantity, and ∼6.37% yield in amino acid analysis, (3) β-sheet second structure, and (4) thin fiber composed mesh-like sheet structure in SEM image. These values were higher than those of the commercial human skin elastin. When comparing hydrolyzed forms, α-elastin from hot alkali insoluble product showed enhanced cell proliferation and maintained cell properties compared to the κ-elastin. Therefore, we confirmed that the perirenal adipose tissue is an ideal source of human elastin with safety assurance, and the hot alkali process combined with pre-process seems to be the optimal method for elastin extraction with high purity and quantity.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Bo Hyun Yoon
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Minji Jeon
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, 34937Dankook University, Cheonan, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - So Young Chun
- BioMedical Research Institute, 65396Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
5
|
Aayush A, Darji S, Dhawan D, Enstrom A, Broman MM, Idrees MT, Kaimakliotis H, Ratliff T, Knapp D, Thompson D. Targeted elastin-like polypeptide fusion protein for near-infrared imaging of human and canine urothelial carcinoma. Oncotarget 2022; 13:1004-1016. [PMID: 36082359 PMCID: PMC9447490 DOI: 10.18632/oncotarget.28271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Cystoscopic visualization of bladder cancer is an essential method for initial bladder cancer detection and diagnosis, transurethral resection, and monitoring for recurrence. We sought to develop a new intravesical imaging agent that is more specific and sensitive using a polypeptide based NIR (near-infrared) probe designed to detect cells bearing epidermal growth factor receptors (EGFR) that are overexpressed in 80% of urothelial carcinoma (UC) cases. The NIR imaging agent consisted of an elastin like polypeptide (ELP) fused with epidermal growth factor (EGF) and conjugated to Cy5.5 to give Cy5.5-N24-EGF as a NIR contrast agent. In addition to evaluation in human cells and tissues, the agent was tested in canine cell lines and tissue samples with naturally occurring invasive UC. Flow cytometry and confocal microscopy were used to test cell-associated fluorescence of the probe in T24 human UC cells, and in K9TCC-SH (high EGFR expression) and K9TCC-Original (low EGF expression) canine cell lines. The probe specifically engages these cells through EGFR within 15 min of incubation and reached saturation within a clinically relevant 1 h timeframe. Furthermore, ex vivo studies with resected canine and human bladder tissues showed minimal signal from normal adjacent tissue and significant NIR fluorescence labeling of tumor tissue, in good agreement with our in vitro findings. Differential expression of EGFR ex vivo was revealed by our probe and confirmed by anti-EGFR immunohistochemical staining. Taken together, our data suggests Cy5.5-ELP-EGF is a NIR probe with improved sensitivity and selectivity towards BC that shows excellent potential for clinical translation.
Collapse
Affiliation(s)
- Aayush Aayush
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Saloni Darji
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander Enstrom
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Meaghan M. Broman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Muhammad T. Idrees
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Hristos Kaimakliotis
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy Ratliff
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Deborah Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - David Thompson
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Haas S, Desombre M, Kirschhöfer F, Huber MC, Schiller SM, Hubbuch J. Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials. Front Bioeng Biotechnol 2022; 10:878838. [PMID: 35814018 PMCID: PMC9257828 DOI: 10.3389/fbioe.2022.878838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.
Collapse
Affiliation(s)
- Sandra Haas
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Monika Desombre
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias C. Huber
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Stefan M. Schiller
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Jürgen Hubbuch,
| |
Collapse
|
7
|
Jin Q, Peng D, Zheng Z. Advances in extracting and understanding the bioactivities of marine organism peptides: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qing‐Hao Jin
- Donghai Science and Technology College Zhejiang Ocean University Zhoushan P.R. China
| | - Ding‐Xin Peng
- Food and Pharmacy College Zhejiang Ocean University Zhoushan P.R. China
| | - Zhou‐Jun Zheng
- Donghai Science and Technology College Zhejiang Ocean University Zhoushan P.R. China
| |
Collapse
|
8
|
Riziotis IG, Lamprou P, Papachristou E, Mantsou A, Karolidis G, Papi R, Choli-Papadopoulou T. De Novo Synthesis of Elastin-like Polypeptides (ELPs): An Applied Overview on the Current Experimental Techniques. ACS Biomater Sci Eng 2021; 7:5064-5077. [PMID: 34666482 DOI: 10.1021/acsbiomaterials.1c00329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elastin-like polypeptides (ELPs) are protein-based biopolymers genetically produced from polypeptides composed of a repeating pentapeptide sequence V-P-G-X-G. The inherent properties of recombinant ELPs, such as smart nature, controlled sequence complexity, physicochemical properties, and biocompatibility, make these polymers suitable for use in nanobiotechnological applications, as biofunctionalized scaffolds for tissue-engineering purposes and drug delivery. In this work, we report the design and synthesis of two elastomeric self-assembling polypeptides (ELPs) that mimic the endogenous human tropoelastin. Using molecular biology techniques, two artificial genes that encode two ELP concatemers of approximate molecular mass 60 kDa, one of them carrying biotin-binding peptide motifs, were constructed. These motifs could facilitate biofunctionalization of the ELPs through tethering biotinylated factors, such as growth factors. The ELPs were heterologously overexpressed in E. coli and subsequently purified in two steps: a nonchromatographic technique by organic solvent extraction, followed by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The characterization of the biochemical properties and biocompatibility of ELPs was also performed in this study. The ELP carrying the biotin-binding motifs was tested for its capability to bind biotin, and indeed, it was observed that it can bind biotinylated proteins specifically. Additionally, results concerning the cytotoxicity of the ELPs exhibited excellent compatibility of the ELPs with mammalian cells in vitro. We anticipate that these ELPs can be used as components of a scaffold that mimics the extracellular matrix (ECM) for the regeneration of endogenously highly elastic tissues.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Georgios Karolidis
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
9
|
Sweet C, Aayush A, Readnour L, Solomon KV, Thompson DH. Development of a Fast Organic Extraction-Precipitation Method for Improved Purification of Elastin-Like Polypeptides That Is Independent of Sequence and Molecular Weight. Biomacromolecules 2021; 22:1990-1998. [PMID: 33826307 PMCID: PMC8496954 DOI: 10.1021/acs.biomac.1c00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elastin-like polypeptides (ELP), an increasingly popular tag for protein purification, commonly rely upon inverse transition cycling (ITC) to exploit their lower critical solution temperature characteristics for purification. While considerably faster than chromatography, ITC is still time consuming and often fails to remove host cell contaminants to an acceptable level for in vivo experiments. Here, we present a rapid purification workflow for ELP of broadly varying molecular weight and sequence using a polar organic solvent extraction and precipitation strategy. Four different ELP purification methods were directly compared for their ability to remove host cell protein, nucleic acids, and lipopolysaccharide (LPS) contaminants using a model ELP. On the basis of these findings, an optimized extraction-precipitation method was developed that gave highly pure ELP from bacterial pellets in approximately 2.5 h while removing major host cell contaminants, including LPS to levels below 1 EU/mL, to produce highly pure material that is suitable for in vivo applications. Application of this method to the rapid purification of an ELP-epidermal growth factor fusion gave an isolate that retained its capacity to bind to epidermal growth factor receptor positive cells, thereby demonstrating that this method is capable of producing a functional construct after purification by organic extraction-precipitation.
Collapse
Affiliation(s)
| | | | - Logan Readnour
- Department of Agricultural and Biological Engineering, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
10
|
Biosynthesized Multivalent Lacritin Peptides Stimulate Exosome Production in Human Corneal Epithelium. Int J Mol Sci 2020; 21:ijms21176157. [PMID: 32859014 PMCID: PMC7504496 DOI: 10.3390/ijms21176157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive. This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis. LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high confluence treated with 1 μM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells at low density treated with 1 μM LP-A96 generated a 210-fold higher number of exosomes compared to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also implies activity as a potential therapeutic peptide that can further improve ocular surface health through the induction of exosomes.
Collapse
|
11
|
Mills CE, Ding E, Olsen B. Protein Purification by Ethanol-Induced Phase Transitions of the Elastin-like Polypeptide (ELP). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carolyn E. Mills
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erika Ding
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
13
|
Fletcher EE, Yan D, Kosiba AA, Zhou Y, Shi H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr Purif 2019; 153:114-120. [PMID: 30217600 DOI: 10.1016/j.pep.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Proteins are essential throughout the biological and biomedical sciences and the purification strategies of proteins of interest have advanced over centuries. Elastin-like polypeptides (ELPs) are compound polymers that have recently been highlighted for their sharp and reversible phase transition property when heated above their lower critical solution temperature (LCST). ELPs preserve this behavior when fused to a protein, and as a result providing a simple method to isolate a recombinant ELP fusion protein from cell contaminants by taking the solution through the soluble and insoluble phase of the ELP fusion protein, a technique designated as the inverse transition cycle (ITC). ITC is considered an inexpensive and efficient way of purifying recombinant ELP fusion proteins. In addition, ELPs render recombinant fusion protein more stability and a longer clear time in blood stream, which give ELPs a lot of valuable applications in the biotechnological and pharmaceutical industry. This article reviews the modernizations of ELPs and briefly highlights on the possible use of technologies such as the automatic piston discharge (APD) centrifuges to improve the efficiency of the ITC in the pharmaceutical industry to obtain benefits.
Collapse
Affiliation(s)
- Emmanuella E Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| |
Collapse
|