1
|
Zhang WS, Liu Y, Shao SY, Shu CQ, Zhou YH, Zhang SM, Qiu J. Surface characteristics and in vitro biocompatibility of titanium preserved in a vitamin C-containing saline storage solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:3. [PMID: 38206387 PMCID: PMC10784388 DOI: 10.1007/s10856-023-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to explore a storage solution for titanium implants and investigate its osteogenic properties. The commercial pure titanium (cp-Ti) surface and double-etched (SLA) titanium surface specimens were preserved in air, saline, 10 mM Vitamin C (VitC)-containing saline and 100 mM VitC-containing saline storage solutions for 2 weeks. The surface microtopography of titanium was observed by scanning electron microscopy (SEM), the surface elemental compositions of the specimens were analyzed by Raman and X-ray photoelectron spectroscopy (XPS), and water contact angle and surface roughness of the specimens were tested. The protein adsorption capacity of two titanium surfaces after storage in different media was examined by BCA kit. The MC3T3-E1 osteoblasts were cultured on two titanium surfaces after storage in different media, and the proliferation, adhesion and osteogenic differentiation activity of osteoblasts were detected by CCK-8, laser confocal microscope (CLSM) and Western blot. The SEM results indicated that the titanium surfaces of the air group were relatively clean while scattered sodium chloride or VitC crystals were seen on the titanium surfaces of the other three groups. There were no significant differences in the micromorphology of the titanium surfaces among the four groups. Raman spectroscopy detected VitC crystals on the titanium surfaces of two experimental groups. The XPS, water contact angle and surface roughness results suggested that cp-Ti and SLA-Ti stored in 0.9% NaCl and two VitC-containing saline storage solutions possessed less carbon contamination and higher surface hydrophilicity. Moreover, the protein adsorption potentials of cp-Ti and SLA-Ti surfaces were significantly improved under preservation in two VitC-containing saline storage solutions. The results of in vitro study showed that the preservation of two titanium surfaces in 100 mM VitC-containing saline storage solution upregulated the cell adhesion, proliferation, osteogenic related protein expressions of MC3T3-E1 osteoblasts. In conclusion, preservation of cp-Ti and SLA-Ti in 100 mM VitC-containing saline storage solution could effectively reduce carbon contamination and enhance surface hydrophilicity, which was conducive to osteogenic differentiation of osteoblasts.
Collapse
Affiliation(s)
- Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Chang-Qing Shu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Boston, MA, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China.
| |
Collapse
|
2
|
Li S, Jin Y, Bai S, Yang J. Electrostatic Analysis of Bioactivity of Ti-6Al-4V Hydrophilic Surface with Laser Textured Micro-Square Convexes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7942. [PMID: 36431426 PMCID: PMC9696582 DOI: 10.3390/ma15227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
At solid-liquid interfaces, charged particles within the electric double layer (EDL) are acted on by the electrostatic force, which may affect cell absorption and surface wettability. In this study, a model of the electrostatic force and surface tension of textured surfaces was presented. Then, the growth and adhesion of Murine osteoblasts (MC3T3-E1) cells on laser-ablated micro-square-textured Ti-6Al-4V surfaces were studied to demonstrate the use of a laser-processed texture to effectively improve bioactivity. Three different micro-square-textured hydrophilic surfaces, presenting lower contact angles of 19°, 22.5°, and 31.75° compared with that of a smooth surface (56.5°), were fabricated using a fiber-optic laser. Cellular morphology and initial cell attachment were analyzed by field emission scanning electron microscopy (SEM) and fluorescence microscopy, respectively. The results show that the electrostatic force not only made the textured surface more hydrophilic but also made the cells tend to adhere to the edges and corners of the protruding convexes. Cell morphology analysis also showed that cells would prefer to grow at the edges and corners of each micro-square convex protrusion. The laser-treated surfaces were more conducive to rapid cell growth and adhesion, and cells were preferentially attached on the hydrophilic-textured surfaces. Electrostatic force may be an important factor in effectively improving the bioactivity of Ti-6Al-4V surfaces, and the presence of more surface grooves would be more conducive to improving the bioactivity of cells.
Collapse
Affiliation(s)
- Si Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shaoxian Bai
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Yang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
3
|
Wu B, Tang Y, Wang K, Zhou X, Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO 2 NTAs. Int J Nanomedicine 2022; 17:1865-1879. [PMID: 35518451 PMCID: PMC9064067 DOI: 10.2147/ijn.s362720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
5
|
Wang H, Yuan H, Wang J, Zhang E, Bai M, Sun Y, Wang J, Zhu S, Zheng Y, Guan S. Influence of the second phase on protein adsorption on biodegradable Mg alloys' surfaces: Comparative experimental and molecular dynamics simulation studies. Acta Biomater 2021; 129:323-332. [PMID: 33831575 DOI: 10.1016/j.actbio.2021.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 01/19/2023]
Abstract
The effect of the second phase on the mechanical properties and corrosion resistance of Mg alloys has been systematically studied. However, there is limited information on the effect of the second phase on protein adsorption behavior. In the present study, the effect of the second phase on protein adsorption on the surfaces of biodegradable Mg alloys was investigated using experimental methods and molecular dynamics (MD) simulations. The experimental results showed that the effect of the second phase on fibrinogen adsorption was type-dependent. Fibrinogen preferentially adsorbed on Y-, Ce-, or Nd-involved second phases, while the second phase containing Zn inhibited its adsorption. MD simulations revealed the mechanism of the second phase that influenced protein adsorption in terms of charge distribution, surface-protein interaction energy, and water molecule distribution. Our studies proposed a deep understanding of the design of Mg-based biomaterials with superior biocompatibility. STATEMENT OF SIGNIFICANCE: Mechanical properties, uniform degradation, and biocompatibility must be considered while designing biomedical Mg alloys. To improve the mechanical properties and corrosion resistance of Mg alloys, the second phase is usually required. However, the effects of the second phase on biocompatibility of Mg alloys have been rarely reported. Here, the influence of the second phase on protein adsorption was experimentally studied by designing Mg alloys with different types of second phase. The first principle calculation and MD simulation were used to reveal the mechanism by which the second phase influences protein adsorption. This work could be used to better elucidate the protein adsorption mechanisms and design principles to improve the biocompatibility of Mg alloys.
Collapse
Affiliation(s)
- Hongyan Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haonan Yuan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jinming Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Engui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyun Bai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2564-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Li C, Li Y, Yao T, Zhou L, Xiao C, Wang Z, Zhai J, Xing J, Chen J, Tan G, Zhou Y, Qi S, Yu P, Ning C. Wireless Electrochemotherapy by Selenium-Doped Piezoelectric Biomaterials to Enhance Cancer Cell Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34505-34513. [PMID: 32508084 DOI: 10.1021/acsami.0c04666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer residues around the surgical site remain a significant cause of treatment failure with cancer recurrence. To prevent cancer recurrence and simultaneously repair surgery-caused defects, it is urgent to develop implantable biomaterials with anticancer ability and good biological activity. In this work, a functionalized implant is successfully fabricated by doping the effective anticancer element selenium (Se) into the potassium-sodium niobate piezoceramic, which realizes the wireless combination of electrotherapy and chemotherapy. Herein, we demonstrate that the Se-doped piezoelectric implant can cause mitochondrial damage by increasing intracellular reactive oxygen species levels and then trigger the caspase-3 pathway to significantly promote apoptosis of osteosarcoma cells in vitro. Meanwhile, its good biocompatibility has been verified. These results are of great importance for future deployment of wireless electro- and chemostimulation to modulate biological process around the defective tissue.
Collapse
Affiliation(s)
- Changhao Li
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yangfan Li
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tiantian Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lei Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cairong Xiao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhengao Wang
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinxia Zhai
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jun Xing
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Junqi Chen
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Suijian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Peng Yu
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Parisi L, Toffoli A, Mozzoni B, Rivara F, Ghezzi B, Cutrera M, Lumetti S, Macaluso GM. Is selective protein adsorption on biomaterials a viable option to promote periodontal regeneration? Med Hypotheses 2019; 132:109388. [PMID: 31491678 DOI: 10.1016/j.mehy.2019.109388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Periodontitis is an inflammatory condition that can induce significant destruction of the periodontium, the set of specialized tissues that provide nourishment and support to the teeth. According to the guided tissue regeneration principles, the periodontium can be regenerated if the spatiotemporal control of wound healing is obtained, namely the tune control of cell response. After material implantation, protein adsorption at the interface is the first occurring biological event, which influences subsequent cell response. With the regard of this, we hypothesize that the control of selective adsorption of biological cues from the surrounding milieu may be a key-point to control selective cell colonization of scaffolds for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Federico Rivara
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Miriam Cutrera
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, IT, Italy
| |
Collapse
|