1
|
Alsofany JM, Khater SE. Repurposing of Nano-Engineered Piroxicam as an Approach for Cutaneous Wound Healing. J Pharm Sci 2024; 113:2723-2733. [PMID: 38862089 DOI: 10.1016/j.xphs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Drug repurposing is a potential strategy to overcome the huge economic expenses of wound healing products. This work aims to develop a topical gel of piroxicam encapsulated into a nanospanlastics vesicular system as an effective, dermal wound dressing. Firstly, piroxicam was entrapped into nanospanlastics formulations and optimized utilizing 23 full factorial experimental designs. The scrutinized factors were Span 60: Edge activator ratio, edge activator type, and permeation enhancer type. The measured responses were vesicle size (VS), polydispersity index (PDI), and% entrapment efficiency (EE). The optimized formula was further adopted into an alginate-pectin gel matrix to maximize adherence to the skin. The rheology and in-vitro release were studied for the developed nanospanlastics gel. Cytotoxicity and wound healing potential using scratch assay were assessed on human adult dermal fibroblast cells. The optimal piroxicam nanospanlastics formula demonstrated a VS of 124.1 ± 1.3 nm, PDI of 0.21 ± 0.01, and EE% of 97.27±0.21%. About 70.0 ± 0.9% and 57.4 ± 0.1% of piroxicam were released from nanospanlastics dispersion and gel within 24 h, respectively. Nanospanlastics gel of piroxicam flowed in a non-Newtonian pseudoplastic shear thinning pattern. It was also biocompatible with the human dermal fibroblast cells and significantly promoted their migration rate which suggests an auspicious cutaneous wound healing aptitude.
Collapse
Affiliation(s)
- Jihad Mahmoud Alsofany
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt.
| | - Shaymaa Elsayed Khater
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| |
Collapse
|
2
|
Doustvaghe YK, Haeri A, Sisakht MM, Amirkhani MA, Vatanpour H. Recombinant human epidermal growth factor-loaded liposomes and transferosomes for dermal delivery: Development, characterization, and cytotoxicity evaluation. Drug Dev Res 2024; 85:e22234. [PMID: 39041350 DOI: 10.1002/ddr.22234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 μg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of -15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.
Collapse
Affiliation(s)
- Yasaman Kiani Doustvaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zheng Y, Yang D, Gao B, Huang S, Tang Y, Wa Q, Dong Y, Yu S, Huang J, Huang S. A DNA-inspired injectable adhesive hydrogel with dual nitric oxide donors to promote angiogenesis for enhanced wound healing. Acta Biomater 2024; 176:128-143. [PMID: 38278340 DOI: 10.1016/j.actbio.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.
Collapse
Affiliation(s)
- Yongsheng Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Dong Yang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shuai Huang
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingde Wa
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yong Dong
- Department of Oncology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523106, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China.
| | - Sheng Huang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
5
|
Zhao Y, Wang C, Zou B, Fu L, Ren S, Zhang X. Design and Evaluation of Tretinoin Fatty Acid Vesicles for the Topical Treatment of Psoriasis. Molecules 2023; 28:7868. [PMID: 38067597 PMCID: PMC10708007 DOI: 10.3390/molecules28237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The goal of the current study was to explore the potential benefits of Tretinoin (Tre) fatty acid vesicles (Tre-FAV) as a prospective antipsoriatic topical delivery system. This promising system can counteract the drug challenges in terms of its extremely low aqueous solubility, instability, skin irritation, and serious systemic adverse effects. Tre-loaded fatty acid vesicles were successfully developed and entirely characterised. The selected formulation was investigated for in vitro release, ex vivo skin retention and psoriasis efficacy studies. The characterisation results of Tre-FAV showed it has a globular shape with a particle size of 126.37 ± 1.290 nm (0.188 ± 0.019 PDI). The entrapment efficiency and zeta potential were discovered to be 84.26 ± 0.816% and -28.9 ± 1.92 mV, respectively. Encapsulation of the drug in the fatty acid vesicles was also strengthened by differential scanning calorimetric and powder FTIR diffraction studies. In vitro release results showed that Tre-FAV significantly increased skin absorption and retention in comparison to the Tre solution. The topical application of Tre-FAV to a mouse model confirmed that it has superior in vivo antipsoriatic properties in terms of well-demarcated papules, erythema and reduced epidermal thickness in comparison to other treatments. The weight of the spleen and the levels of the cytokines IL-17 and IL-6 decreased after treatment. In conclusion, FAV dramatically increased the water solubility and skin permeability of Tre and its anti-psoriasis activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Z.); (C.W.); (B.Z.); (L.F.); (S.R.)
| |
Collapse
|
6
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
7
|
Cai Y, Chu Y, Gong Y, Hong Y, Song F, Wang H, Zhang H, Sun X. Enhanced Transdermal Peptide-Modified Flexible Liposomes for Efficient Percutaneous Delivery of Chrysomycin A to Treat Subcutaneous Melanoma and Intradermal MRSA Infection. Adv Healthc Mater 2023; 12:e2300881. [PMID: 37267625 DOI: 10.1002/adhm.202300881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Superficial skin diseases, including skin infections and tumors, are common healthcare burdens. In this study, the in vivo activity of chrysomycin A (CA) is explored, and a transdermal liposomal CA formulation is further constructed for the simultaneous treatment of cutaneous melanoma and cutaneous methicillin-resistant Staphylococcus aureus (MRSA) infection. The prepared liposomes (TD-LP-CA) display a strong antitumor effect with an IC50 value of less than 0.1 µm in B16-F10 cells, suppress the proliferation of MRSA with a minimum inhibitory concentration (MIC) of 1 µm, and eradicate established MRSA biofilms at 10× MIC in vitro. More importantly, TD-LP-CA shows enhanced stratum corneum (SC) penetration, reaching more than 500 µm beneath the skin's surface due to modification with the TD peptide, and demonstrates excellent subcutaneous tumor penetration after skin application in vivo. TD-LP-CA displays an excellent therapeutic effect against intradermal MRSA infection in mice after topical dermal administration, as well as a moderate inhibitory effect on subcutaneous melanoma with a 75% tumor inhibition rate. The liposomes prepared herein can be a promising carrier for transcutaneous CA transfer for the treatment of superficial diseases such as skin tumors and infections due to their ability to overcome the skin barrier.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuteng Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Huawei Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Wang W, Xu X, Song Y, Lan L, Wang J, Xu X, Du Y. Nano transdermal system combining mitochondria-targeting cerium oxide nanoparticles with all-trans retinoic acid for psoriasis. Asian J Pharm Sci 2023; 18:100846. [PMID: 37881797 PMCID: PMC10594570 DOI: 10.1016/j.ajps.2023.100846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023] Open
Abstract
Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress. Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis. Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved. Herein, we reported a nanotransdermal delivery system composed of all-trans retinoic acid (TRA), triphenylphosphine (TPP)-modified cerium oxide (CeO2) nanoparticles, flexible nanoliposomes and gels (TCeO2-TRA-FNL-Gel). The results revealed that TCeO2 synthesized by the anti-micelle method, with a size of approximately 5 nm, possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species (ROS). TCeO2-TRA-FNL prepared by the film dispersion method, with a size of approximately 70 nm, showed high drug encapsulation efficiency (>96%). TCeO2-TRA-FNL-Gel further showed sustained drug release behaviors, great transdermal permeation ability, and greater skin retention than the free TRA. The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO2-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells. The results of in vivo imiquimod (IMQ)-induced model indicated that TCeO2-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms. In summary, the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinyi Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Song
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Lan
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jun Wang
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinchang Xu
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
9
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
10
|
Itzhakov R, Eretz-Kdosha N, Silberstein E, Alfer T, Gvirtz R, Fallik E, Ogen-Shtern N, Cohen G, Poverenov E. Oligochitosan and oxidized nucleoside-based bioderived hydrogels for wound healing. Carbohydr Polym 2023; 314:120947. [PMID: 37173046 DOI: 10.1016/j.carbpol.2023.120947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Herein, we report biocompatible hydrogel for wound healing that was prepared using nature-sourced building blocks. For the first time, OCS was employed as a building macromolecule to form bulk hydrogels along with the nature-sourced nucleoside derivative (inosine dialdehyde, IdA) as the cross-linker. A strong correlation was obtained between the mechanical properties and stability of the prepared hydrogels with a cross-linker concentration. The Cryo-SEM images of IdA/OCS hydrogels showed an interconnected spongy-like porous structure. Alexa 555 labeled bovine serum albumin was incorporated into the hydrogels matrix. The release kinetics studies under physiological conditions indicated that cross-linker concentration could also control the release rate. The potential of hydrogels in wound healing applications was tested in vitro and ex vivo on human skin. Topical application of the hydrogel was excellently tolerated by the skin with no impairment of epidermal viability or irritation, determined by MTT and IL-1α assays, respectively. The hydrogels were used to load and deliver epidermal growth factor (EGF), showing an increase in its ameliorating action, effectively enhancing wound closure inflicted by punch biopsy. Furthermore, BrdU incorporation assay performed in both fibroblast and keratinocyte cells revealed an increased proliferation in hydrogel-treated cells and an enhancement of EGF impact in keratinocytes.
Collapse
Affiliation(s)
- Rafael Itzhakov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, Biochemistry, and Food Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Noy Eretz-Kdosha
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Topaz Alfer
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Raanan Gvirtz
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel.
| | - Elazar Fallik
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Navit Ogen-Shtern
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Guy Cohen
- The Skin Research Institute, Dead Sea & Arava Science Center, Masada 86910, Israel Eilat Campus, Ben-Gurion University of the Negev, Eilat 8855630, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel.
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
11
|
Pandey S, Shamim A, Shaif M, Kushwaha P. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1811-1825. [PMID: 36862150 DOI: 10.1007/s00210-023-02441-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Diabetic foot wounds (DFUs) are counted as one of the most common microvascular complications associated with poorly controlled and chronic diabetes mellitus. It confers a serious challenge to clinical practice, surmounting hyperglycemia-induced disturbance in angiogenesis and endothelial dysfunction, with limited fruitful intervention to control the manifestations of DFUs. Resveratrol (RV) can improve endothelial function and has strong pro-angiogenic properties for the treatment of diabetic foot wounds. The present study aims to design an RV-loaded liposome-in-hydrogel system to effectively heal diabetic foot ulcers. A thin-film hydration method was used to prepare RV-loaded liposomes. Liposomal vesicles were assessed, for various characteristics such as particle size, zeta potential, and entrapment efficiency. The best-prepared liposomal vesicle was then incorporated into 1% carbopol 940 gel to develop a hydrogel system. The RV-loaded liposomal gel showed improved skin penetration. To assess the efficacy of the developed formulation, a diabetic foot ulcer animal model was used. The topical application of the developed formulation significantly reduced blood glucose and increased glycosaminoglycans (GAGs) to improve ulcer healing as well as wound closure on day 9. Faster re-epithelization, proliferation of fibroblast, formation of collagen, and reduced inflammatory cell infiltration at the wound site were also noted. Results indicate that RV-loaded liposomes in hydrogel-based wound dressing significantly accelerate wound healing in diabetic foot ulcers by restoring the altered wound healing process in diabetics.
Collapse
Affiliation(s)
- Supriya Pandey
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Mohammad Shaif
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
12
|
Lv Z, Bao H, Zhu M, Xie Y, Tang H, Miao D, Guo X, Zhai X, Wang S, Chen H, Cong D, Liu X, Pei J. A novel deformable liposomal hydrogel loaded with a SREBP-1-inhibiting polypeptide for reducing sebum synthesis in golden hamster model. Eur J Pharm Sci 2023:106483. [PMID: 37268093 DOI: 10.1016/j.ejps.2023.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Excessive sebum is the major factor involved in the pathophysiology of seborrheic diseases. Chemical medicines can result in mild to severe side effects. Polypeptides with much less side effects make them ideal for reducing sebum synthesis. Sterol regulatory element-binding proteins-1 (SREBP-1) is necessary for the biosynthesis of sterols. A SREBP-1-inhibiting polypeptide (SREi), which competitively inhibits the ubiquitination of Insig-1 so as to suppress the activation of SREBP-1 was selected as an active ingredient and formulated into skin topical preparations. The SREi anionic deformable liposomes contained sodium deoxycholate (SDCh) at the concentration of 4.4 mg/mL (SREi-ADL3) and SREi-ADL3 in 0.3% (w/v) carbomer hydrogel (SREi-ADL3-GEL) were prepared and characterized. The SREi-ADL3 presented a high entrapment efficiency of 92.62 ± 6.32%, a particle size of 99.54 ± 7.56 nm and a surface charge of -19.18 ± 0.45 mV. SREi-ADL3-GEL exhibited a sustained release behavior, a higher stability, a much more cellular uptake ability and transdermal absorption. In vivo golden hamster model confirmed that SREi-ADL3-GEL presented the strongest inhibitory effect on sebaceous gland growth and sebum synthesis by down-regulating the mRNA and protein expression of SREBP-1, fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase 1 (ACC1). As confirmed by histological analysis, only a small amount of sebaceous gland lobes with the lightest staining intensity and the smallest dyeing area could be observed in the SREi-ADL3-GEL group. Taken together, SREi-ADL3-GEL displayed potential applications in sebum excessive production related diseases.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xinhui Zhai
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Hongli Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dengli Cong
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
13
|
Shakhakarmi K, Seo JE, Lamichhane S, Thapa C, Lee S. EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies. Arch Pharm Res 2023; 46:299-322. [PMID: 36928481 DOI: 10.1007/s12272-023-01444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.
Collapse
Affiliation(s)
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | | | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
14
|
Topical Delivery of Cell-Penetrating Peptide-Modified Human Growth Hormone for Enhanced Wound Healing. Pharmaceuticals (Basel) 2023; 16:ph16030394. [PMID: 36986493 PMCID: PMC10053240 DOI: 10.3390/ph16030394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Protein drugs have been emerging as a class of promising therapeutics. However, their topical application has been limited by their high molecular weight and poor permeability to the cell membrane. In this study, we aimed to enhance human growth hormone (hGH) permeability for topical application by conjugation of TAT peptide, a cell-penetrating peptide, to hGH via crosslinker. After TAT was conjugated to hGH, TAT-hGH was purified by affinity chromatography. TAT-hGH significantly increased cell proliferation compared with the control. Interestingly, the effect of TAT-hGH was higher than hGH at the same concentration. Furthermore, the conjugation of TAT to hGH enhanced the permeability of TAT-hGH across the cell membrane without affecting its biological activity in vitro. In vivo, the topical application of TAT-hGH into scar tissue markedly accelerated wound healing. Histological results showed that TAT-hGH dramatically promoted the re-epithelialization of wounds in the initial stage. These results demonstrate TAT-hGH as a new therapeutic potential drug for wound healing treatment. This study also provides a new method for topical protein application via enhancement of their permeability.
Collapse
|
15
|
Tiwari R, Pathak K. Local Drug Delivery Strategies towards Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020634. [PMID: 36839956 PMCID: PMC9964694 DOI: 10.3390/pharmaceutics15020634] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
A particular biological process known as wound healing is connected to the overall phenomena of growth and tissue regeneration. Several cellular and matrix elements work together to restore the integrity of injured tissue. The goal of the present review paper focused on the physiology of wound healing, medications used to treat wound healing, and local drug delivery systems for possible skin wound therapy. The capacity of the skin to heal a wound is the result of a highly intricate process that involves several different processes, such as vascular response, blood coagulation, fibrin network creation, re-epithelialisation, collagen maturation, and connective tissue remodelling. Wound healing may be controlled with topical antiseptics, topical antibiotics, herbal remedies, and cellular initiators. In order to effectively eradicate infections and shorten the healing process, contemporary antimicrobial treatments that include antibiotics or antiseptics must be investigated. A variety of delivery systems were described, including innovative delivery systems, hydrogels, microspheres, gold and silver nanoparticles, vesicles, emulsifying systems, nanofibres, artificial dressings, three-dimensional printed skin replacements, dendrimers and carbon nanotubes. It may be inferred that enhanced local delivery methods might be used to provide wound healing agents for faster healing of skin wounds.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur 208020, Uttar Pradesh, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
16
|
Partoazar A, Kianvash N, Goudarzi R. New concepts in wound targeting through liposome-based nanocarriers (LBNs). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zhu S, Zhao Z, Qin W, Liu T, Yang Y, Wang Z, Ma H, Wang X, Liu T, Qi D, Guo P, Pi J, Tian B, Zhang H, Li N. The Nanostructured lipid carrier gel of Oroxylin A reduced UV-induced skin oxidative stress damage. Colloids Surf B Biointerfaces 2022; 216:112578. [PMID: 35636325 DOI: 10.1016/j.colsurfb.2022.112578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Oxidative stress damage caused by sun exposure damages the appearance and function of the skin, which is one of the essential inducements of skin aging and even leads to skin cancer. Oroxylin A (OA) is a flavonoid with excellent antioxidant activity and has protective effects against photoaging induced by UV irradiation. However, the strong barrier function of the skin stratum corneum prevents transdermal absorption of the drug, which limits the application of OA in dermal drug delivery. Studies have shown that nanostructured lipid carriers (NLC) can promote not only transdermal absorption of drugs but also increase drug stability and control drug release efficiency, which has broad prospects for clinical applications. In this paper, NLC loaded with OA (OA-NLC) was prepared in order to improve the skin permeability and stability of OA. In vitro studies revealed that OA-NLC had better therapeutic effects than OA solution (OA-Sol) in the cellular model of UVB radiation. OA-Sol and OA-NLC were immobilized in a hydrogel matrix to facilitate application to the dorsal skin of mice. It was found that OA-NLC-gel showed significant antioxidant and anti-apoptotic activity compared to OA-Sol-gel, which was able to protect against skin damage in mice after UV radiation. These results suggest that OA-NLC can improve the deficiencies of OA in skin delivery and show better resistance to UV-induced oxidative damage. The application of OA-NLC to skin delivery systems has good prospects and deserves further development and investigation.
Collapse
Affiliation(s)
- Shan Zhu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyue Zhao
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenxiao Qin
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Yang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zijing Wang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Ma
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Wang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongli Qi
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pan Guo
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - JiaXin Pi
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - BaoCheng Tian
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Han Zhang
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
19
|
Jiao C, Yun H, Liang H, Lian X, Li S, Chen J, Qadir J, Yang BB, Xie Y. An active ingredient isolated from Ganoderma lucidum promotes burn wound healing via TRPV1/SMAD signaling. Aging (Albany NY) 2022; 14:5376-5389. [PMID: 35696640 PMCID: PMC9320545 DOI: 10.18632/aging.204119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
The mushroom Ganoderma lucidum is a traditional Chinese medicine and G. lucidum spore oil (GLSO) is the lipid fraction isolated from Ganoderma spores. We examined the effect of GLSO on burn wound healing in mice. Following wounding, GLSO was applied on the wounds twice daily. Repair analysis was performed by Sirius-Red-staining at different time points. Cell proliferation and migration assays were performed to verify the effect of GLSO on growth. Network pharmacology analysis to identify possible targets was also carried out, followed by Western blotting, nuclear translocation, cell proliferation, and immunofluorescence assays for in-depth investigation of the mechanism. Our study showed that GLSO significantly promoted cell proliferation, and network pharmacology analysis suggested that GLSO might act through transient receptor potential vanilloid receptor 1 (TRPV1)/SMAD signaling. Furthermore, GLSO elevated SMAD2/3 expression in skin burn and promoted its nuclear translocation, and TRPV1 expression was also increased upon exposure to GLSO. Cell proliferation and immunofluorescence assays with TRPV1 inhibitor showed that GLSO accelerated skin burn wound healing through TRPV1 and SMADs signaling, which provides a foundation for clinical application of GLSO in the healing of deep skin burns.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| | - Hao Yun
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Xiaodong Lian
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Shunxian Li
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Jiaming Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Javeria Qadir
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| |
Collapse
|
20
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
21
|
Bhadauria SS, Malviya R. Advancement in Nanoformulations for the Management of Diabetic Wound Healing. Endocr Metab Immune Disord Drug Targets 2022; 22:911-926. [PMID: 35249512 DOI: 10.2174/1871530322666220304214106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
People with diabetes have a very slow tendency for wound healing. Wound healing is a vast process where several factors inhibit the sequence of healing. Nano formulation plays a major role during acute and chronic wound healing. The present manuscript aims to discuss the role of nanoformulation in the treatment of diabetic wound healing. Diabetes is a common disease that has harmful consequences which lead to bad health. During the literature survey, it was observed that nanotechnology has significant advantages in the treatment of diabetic wound healing. The present manuscript summarized the role of nanomaterials in wound healing, challenges in diabetic wound healing, physiology of wound healing, a limitation that comes during wound repair, and treatments available for wound healing. After a comprehensive literature survey, it can be concluded that health worker needs more focus on the area of wound healing in diabetic patients. Medical practitioners, pharmaceutical and biomedical researchers need more attention towards the utilization of nanoformulations for the treatment of wound healing, specifically in the case of diabetes.
Collapse
Affiliation(s)
- Shailendra Singh Bhadauria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Zhu XF, Su DD, Tian XH, Yang C, Zhang WX, Yang XR, Zhang MQ, Xi LF, Wei L, Chen HB, Cheng F, Pang YX. Engineering PD-L1 Cellular Nanovesicles Encapsulating Epidermal Growth Factor for Deep Second-Degree Scald Treatment. J Biomed Nanotechnol 2022; 18:898-908. [PMID: 35715909 DOI: 10.1166/jbn.2022.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Scars are common and intractable consequences after scalded wound healing, while monotherapy of epidermal growth factors does not solve this problem. Maintaining the stability of epidermal growth factors and promoting scarless healing of wounds is paramount. In this study, engineering cellular nanovesicles overexpressing PD-L1 proteins, biomimetic nanocarriers with immunosuppressive efficacy, were successfully prepared to encapsulate epidermal growth factors for maintaining its bioactivity. Remarkably, PD-L1 cellular nanovesicles encapsulating epidermal growth factors (EGF@PDL1 NVs) exerted desired therapeutic effect by attenuating the overactivation of T cell immune response and promoting skin cells migration and proliferation. Hence, EGF@PD-L1 NVs promoted wound healing and prevented scarring in deep second-degree scald treatment, demonstrating a better effect than using individual PD-L1 NVs or EGF. This research proved that EGF@PD-L1 NVs is considered an innovative and thorough therapy of deep second-degree scald.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Dan-Dan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin-Hui Tian
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Cheng Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Xian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin-Rui Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Man-Qi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Li-Fang Xi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lan Wei
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830017, China
| | - Hong-Bo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yu-Xin Pang
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China
| |
Collapse
|
23
|
Kong J, Qiang W, Jiang J, Hu X, Chen Y, Guo Y, Liu H, Sun S, Gao H, Zhang Y, Gao Y, Liu X, Liu X, Li H. Safflower oil body nanoparticles deliver hFGF10 to hair follicles and reduce microinflammation to accelerate hair regeneration in androgenetic alopecia. Int J Pharm 2022; 616:121537. [PMID: 35150848 DOI: 10.1016/j.ijpharm.2022.121537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1β, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.
Collapse
Affiliation(s)
- Jie Kong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jingyi Jiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xingli Hu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yining Chen
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - YongXin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxiang Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Siming Sun
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongtao Gao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yuan Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yanyan Gao
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Haiyan Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
24
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Shen Q, Tang T, Hu Q, Ying X, Shu G, Teng C, Du Y. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy. Biomater Sci 2021; 9:8386-8395. [PMID: 34787601 DOI: 10.1039/d1bm01438b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methotrexate (MTX) as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) through oral and injectable administration is still problematic in the clinic. Herein, a MTX-loaded thermal-responsible flexible liposome (MTFL) incorporated within a carbomer-based gel was prepared as a novel transdermal agent (MTFL/Gel) for effective treatment of RA. It was found that MTFL had an average size of approximately 90 nm, which could rapidly release the drug under thermal conditions. The prepared MTFL/Gel could remarkably increase the MTX skin permeation as compared with free MTX, which was possibly due to the deformable membrane of flexible liposomes. Moreover, the results suggested MTFL/Gel could lead to a remarkably enhanced RA treatment when in combination with microwave hyperthermia. The superior ability of MTFL/Gel to alleviate RA response was attributed to the excellent skin permeation, thermal-responsible drug release, and synergistic anti-arthritic effect of MTX chemotherapy and microwave-induced hyperthermia therapy. Overall, the MTFL/Gel with dual deformable and thermal-responsible performances could be used as a novel promising transdermal agent for enhanced treatment of RA.
Collapse
Affiliation(s)
- Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China. .,School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Ting Tang
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China.
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 32200, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
27
|
Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. BURNS & TRAUMA 2021; 9:tkab026. [PMID: 34778468 PMCID: PMC8579746 DOI: 10.1093/burnst/tkab026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Moderate or severe burns are potentially devastating injuries that can even cause death, and many of them occur every year. Infection prevention, anti-inflammation, pain management and administration of growth factors play key roles in the treatment of burn wounds. Novel therapeutic strategies under development, such as nanotherapeutics, are promising prospects for burn wound treatment. Nanotherapeutics, including metallic and polymeric nanoformulations, have been extensively developed to manage various types of burns. Both human and animal studies have demonstrated that nanotherapeutics are biocompatible and effective in this application. Herein, we provide comprehensive knowledge of and an update on the progress of various nanoformulations for the treatment of burn wounds.
Collapse
Affiliation(s)
- Rong Huang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liang Chen
- Department of plastic surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, China
| |
Collapse
|
28
|
Miricescu D, Badoiu SC, Stanescu-Spinu II, Totan AR, Stefani C, Greabu M. Growth Factors, Reactive Oxygen Species, and Metformin-Promoters of the Wound Healing Process in Burns? Int J Mol Sci 2021; 22:ijms22179512. [PMID: 34502429 PMCID: PMC8431501 DOI: 10.3390/ijms22179512] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Burns can be caused by various factors and have an increased risk of infection that can seriously delay the wound healing process. Chronic wounds caused by burns represent a major health problem. Wound healing is a complex process, orchestrated by cytokines, growth factors, prostaglandins, free radicals, clotting factors, and nitric oxide. Growth factors released during this process are involved in cell growth, proliferation, migration, and differentiation. Reactive oxygen species are released in acute and chronic burn injuries and play key roles in healing and regeneration. The main aim of this review is to present the roles of growth factors, reactive oxygen species, and metformin in the healing process of burn injuries.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embriology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Department of Plastic and Reconstructive Surgery, Life Memorial Hospital, 365 Grivitei Street, 010719 Bucharest, Romania
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| |
Collapse
|
29
|
Development and evaluation studies of Corylin loaded nanostructured lipid carriers gel for topical treatment of UV-induced skin aging. Exp Gerontol 2021; 153:111499. [PMID: 34329721 DOI: 10.1016/j.exger.2021.111499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
We prepared nanostructured lipid carriers (NLC) to promote skin permeation of Corylin so that it can increase its effect on photoaging. Corylin-NLCs were prepared and characterized based on morphology, particle size, zeta potentials, FTIR and DSC. In vitro, we assess the cytotoxicity and lactate dehydrogenase (LDH) of HaCaT cells irradiated by UVB. Expression of antioxidant enzymes was evaluated by commercial kits. The effects of Corylin-NLC on apoptosis were confirmed by flow cytometry and western blotting. In vivo, we use UV irradiated mouse as the oxidative stress model to assess the therapeutic effect of Corylin loaded NLC gel. We identified the Corylin-NLCs can significantly suppress the LDH release, decrease MDA content, increase in CAT, SOD, GSH-Px activity, increase the expression of Bcl-2/Bax protein and reduce the expression of cleaved caspase-3/caspase-3 protein on UVB induced HaCaT cells. The histopathological lesions were significantly improved and observably decreased MDA level, increase in antioxidant enzymes activity in serum of mice by pretreatment of Corylin-NLCs gel. Overall, this study proposes a promising strategy for improving the therapeutic efficacy of photoaging.
Collapse
|
30
|
Singh A, Maqsood Z, Iqubal MK, Ali J, Baboota S. Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing. Curr Drug Deliv 2021; 19:192-211. [PMID: 34315364 DOI: 10.2174/1567201818666210727165916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zeba Maqsood
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
31
|
Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafawali SK, Ntemi PV, Chikukwa MTR, Makoni PA. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol 2021; 73:1427-1441. [PMID: 34132342 DOI: 10.1093/jpp/rgab082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Vesicular drug delivery has become a useful approach for therapeutic administration of pharmaceutical compounds. Lipid vesicles have found application in membrane biology, immunology, genetic engineering and theragnostics. This review summarizes topical delivery, specifically dermal/transdermal, ocular and transungual, via these vesicles, including future formulation perspectives. KEY FINDINGS Liposomes and their subsequent derivatives, viz. niosomes, transferosomes, pharmacososmes and ethosomes, form a significant part of vesicular systems that have been successfully utilized in treating an array of topical disorders. These vesicles are thought to be a safe and effective mode of improving the delivery of lipophilic and hydrophilic drugs. SUMMARY Several drug molecules are available for topical disorders. However, physicochemical properties and undesirable toxicity have limited their efficacy. Vesicular delivery systems have the potential to overcome these shortcomings due to properties such as high biocompatibility, simplicity of surface modification and suitability as controlled delivery vehicles. However, incorporating these systems into environmentally responsive dispersants such as hydrogels, ionic liquids and deep eutectic solvents may further enhance therapeutic prowess of these delivery systems. Consequently, improved vesicular drug delivery can be achieved by considering combining some of these formulation approaches.
Collapse
Affiliation(s)
- Bwalya A Witika
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Larry L Mweetwa
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Kabo O Tshiamo
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Karen Edler
- Department of Chemistry, University of Bath, Bath, UK
| | - Scott K Matafawali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Pascal V Ntemi
- Department of Pharmaceutics, School of Pharmacy, Muhimbili University of Health Allied Sciences, Dar es Salaam, Tanzania
| | - Melissa T R Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Pedzisai A Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
32
|
Surini S, Leonyza A, Suh CW. Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Adv Pharm Bull 2020; 10:586-594. [PMID: 33072536 PMCID: PMC7539322 DOI: 10.34172/apb.2020.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Recombinant human epidermal growth factor (rhEGF) is a 6045-Da peptide that promotes the cell growth process, and it is also used for cosmetic purposes as an anti-aging compound. However, its penetration into skin is limited by its large molecular size. This study aimed to prepare rhEGF-loaded transfersomal emulgel with enhanced skin penetration compared with that of non-transfersomal rhEGF emulgel. Methods: Three transfersome formulations were prepared with different ratios between the lipid vesicle (phospholipid and surfactant) and rhEGF (200:1, 133:1, and 100:1) using a thin-film hydration-extrusion method. The physicochemical properties of these transfersomes and the percutaneous delivery of the transfersomal emulgel were evaluated. Long-term and accelerated stability studies were also conducted. Results: The 200:1 ratio of lipid to drug was optimal for rhEGF-loaded transfersomes, which had a particle size of 128.1 ± 0.66 nm, polydispersity index of 0.109 ± 0.004, zeta potential of -43.1 ± 1.07 mV, deformability index of 1.254 ± 0.02, and entrapment efficiency of 97.77% ± 0.09%. Transmission electron microscopy revealed that the transfersomes had spherical and unilamellar vesicles. The skin penetration of rhEGF was enhanced by as much as 5.56 fold by transfersomal emulgel compared with that of non-transfersomal emulgel. The stability study illustrated that the rhEGF levels after 3 months were 84.96-105.73 and 54.45%-66.13% at storage conditions of 2°C-8°C and 25°C ± 2°C/RH 60% ± 5%, respectively. Conclusion: The emulgel preparation containing transfersomes enhanced rhEGF penetration into the skin, and skin penetration was improved by increasing the lipid content.
Collapse
Affiliation(s)
- Silvia Surini
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Astried Leonyza
- Laboratory of Pharmaceutics and Pharmaceutical Technology Development, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Chang Woo Suh
- PT Daewoong Pharmaceutical Company Indonesia, Jakarta 10230, Indonesia
| |
Collapse
|
33
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
34
|
Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020; 12:E587. [PMID: 32599791 PMCID: PMC7356306 DOI: 10.3390/pharmaceutics12060587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for effective delivery of photosensitive active compounds has resulted in the development of colloid chemistry and nanotechnology. Recently, many kinds of novel formulations with outstanding pharmaceutical potential have been investigated with an expansion in the design of a wide variety of "soft" nanostructures such as simple or multiple (double) nanoemulsions and lipid formulations. The latter can then be distinguished into vesicular, including liposomes and "smart" vesicles such as transferosomes, niosomes and ethosomes, and non-vesicular nanosystems with solid lipid nanoparticles and nanostructured lipid carriers. Encapsulation of photosensitive agents such as drugs, dyes, photosensitizers or antioxidants can be specifically formulated by the self-assembly of phospholipids or other amphiphilic compounds. They are intended to match unique pharmaceutic and cosmetic requirements and to improve their delivery to the target site via the most common, i.e., transdermal, intravenous or oral administration routes. Numerous surface modifications and functionalization of the nanostructures allow increasing their effectiveness and, consequently, may contribute to the treatment of many diseases, primarily cancer. An increasing article number is evidencing significant advances in applications of the different classes of the photosensitive agents incorporated in the "soft" colloidal nanocarriers that deserved to be highlighted in the present review.
Collapse
Affiliation(s)
| | | | | | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (A.P.); (B.T.); (E.W.)
| |
Collapse
|
35
|
Wang W, Shu GF, Lu KJ, Xu XL, Sun MC, Qi J, Huang QL, Tan WQ, Du YZ. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J Nanobiotechnology 2020; 18:80. [PMID: 32448273 PMCID: PMC7245867 DOI: 10.1186/s12951-020-00635-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. Results Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. Conclusions Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.![]()
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, The Third People's Hospital of Hangzhou, 38 West Lake Avenue, Hangzhou, 310009, China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min-Cheng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qiao-Ling Huang
- Department of Pharmacy, The Third People's Hospital of Hangzhou, 38 West Lake Avenue, Hangzhou, 310009, China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|