1
|
Cárdenas-Aguazaco W, Lara-Bertrand AL, Prieto-Abello L, Barreto-López N, Camacho B, Silva-Cote I. Exploring calcium-free alternatives in endochondral bone repair tested on In vivo trials - A review. Regen Ther 2024; 26:145-160. [PMID: 38872977 PMCID: PMC11169084 DOI: 10.1016/j.reth.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Bone repair via endochondral ossification is a complex process for the critical size reparation of bone defects. Tissue engineering strategies are being developed as alternative treatments to autografts or allografts. Most approaches to bone regeneration involve the use of calcium composites. However, exploring calcium-free alternatives in endochondral bone repair has emerged as a promising way to contribute to bone healing. By analyzing researches from the last ten years, this review identifies the potential benefits of such alternatives compared to traditional calcium-based approaches. Understanding the impact of calcium-free alternatives on endochondral bone repair can have profound implications for orthopedic and regenerative medicine. This review evaluates the efficacy of calcium-free alternatives in endochondral bone repair through in vivo trials. The findings may guide future research to develop innovative strategies to improve endochondral bone repair without relying on calcium. Exploring alternative approaches may lead to the discovery of novel therapies that improve bone healing outcomes.
Collapse
Affiliation(s)
- William Cárdenas-Aguazaco
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Adriana Lorena Lara-Bertrand
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Leonardo Prieto-Abello
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Nicolás Barreto-López
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Bernardo Camacho
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Ingrid Silva-Cote
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| |
Collapse
|
2
|
Wu H, Shao C, Shi J, Hu Z, Zhou Y, Chen Z, Tang R, Xie Z, Jin W. Hyaluronic acid-mediated collagen intrafibrillar mineralization and enhancement of dentin remineralization. Carbohydr Polym 2023; 319:121174. [PMID: 37567692 DOI: 10.1016/j.carbpol.2023.121174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 08/13/2023]
Abstract
Non-collagenous proteins (NCPs) in the extracellular matrix (ECM) of bone and dentin are known to play a critical regulatory role in the induction of collagen fibril mineralization and are embedded in hyaluronic acid (HA), which acts as a water-retaining glycosaminoglycan and provides necessary biochemical and biomechanical cues. Our previous study demonstrated that HA could regulate the mineralization degree and mechanical properties of collagen fibrils, yet its kinetics dynamic mechanism on mineralization is under debate. Here, we further investigated the role of HA on collagen fibril mineralization and the possible mechanism. The HA modification can significantly promote intrafibrillar collagen mineralization by reducing the electronegativity of the collagen surface to enhance calcium ions (Ca2+) binding capacity to create a local higher supersaturation. In addition, the HA also provides additional nucleation sites and shortens the induction time of amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) crystallization, which benefits mineralization. The acceleration effect of HA on intrafibrillar collagen mineralization is also confirmed in collagen hydrogel and in vitro dentin remineralization. These findings offer a physicochemical view of the regulation effect of carbohydrate polymers in the body on biomineralization, the fine prospect for an ideal biomaterial to repair collagen-mineralized tissues.
Collapse
Affiliation(s)
- Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
3
|
Hogan KJ, Öztatlı H, Perez MR, Si S, Umurhan R, Jui E, Wang Z, Jiang EY, Han SR, Diba M, Jane Grande-Allen K, Garipcan B, Mikos AG. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater 2023; 10:rbad090. [PMID: 37954896 PMCID: PMC10634525 DOI: 10.1093/rb/rbad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
Demineralized bone matrix (DBM) has been widely used clinically for dental, craniofacial and skeletal bone repair, as an osteoinductive and osteoconductive material. 3D printing (3DP) enables the creation of bone tissue engineering scaffolds with complex geometries and porosity. Photoreactive methacryloylated gelatin nanoparticles (GNP-MAs) 3DP inks have been developed, which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation. Here, novel DBM nanoparticles (DBM-NPs, ∼400 nm) were fabricated and characterized prior to incorporation in 3DP inks. The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks, assess the impact of ultraviolet (UV) crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds. The addition of methacryloylated DBM-NPs (DBM-NP-MAs) to composite colloidal inks (100:0, 95:5 and 75:25 GNP-MA:DBM-NP-MA) did not significantly impact the rheological properties associated with printability, such as viscosity and shear recovery or photocrosslinking. UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an ∼40% greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline (PBS). Likewise, degradation (hydrolytic and enzymatic) over 21 days for all DBM-NP-MA content groups was significantly decreased, ∼45% less in PBS and collagenase-containing PBS, in UV-crosslinked versus uncrosslinked groups. The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation. An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined. The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA
| | - Hayriye Öztatlı
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Marissa R Perez
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sophia Si
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Reyhan Umurhan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Elysa Jui
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Ziwen Wang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sa R Han
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Mani Diba
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
4
|
Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J, Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell-Extracellular Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4431. [PMID: 34442954 PMCID: PMC8398413 DOI: 10.3390/ma14164431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Mert Ergin
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research, Translational Center for Regenerative Therapies, 97082 Wuerzburg, Germany;
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
5
|
Diallo AM, Rota S, Boissière M, Bardonnet R, Pauthe E, Petite H, Benoist HM, Bensidhoum M, Anagnostou F. Osteoformation potential of an allogenic partially demineralized bone matrix in critical-size defects in the rat calvarium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112207. [PMID: 34225859 DOI: 10.1016/j.msec.2021.112207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p < 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p < 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.
Collapse
Affiliation(s)
- Ahmad Moustapha Diallo
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Periodontology, Institute of Odontology and Stomatology (IOS), University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal; Faculty of Medecine, Pharmacy and Odonto-Stomatology, University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal
| | - Solène Rota
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France; Biobank, 3 rue Georges Charpak, 77127 Lieusaint, France
| | - Michel Boissière
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | | | - Emmanuel Pauthe
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - Hervé Petite
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France
| | - Henri M Benoist
- Service of Periodontology, Institute of Odontology and Stomatology (IOS), University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal; Faculty of Medecine, Pharmacy and Odonto-Stomatology, University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal
| | - Morad Bensidhoum
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France
| | - Fani Anagnostou
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology University of Paris, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
6
|
Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis. Int J Oral Sci 2021; 13:14. [PMID: 33846295 PMCID: PMC8041815 DOI: 10.1038/s41368-021-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mineralized tissue regeneration is an important and challenging part of the field of tissue engineering and regeneration. At present, autograft harvest procedures may cause secondary trauma to patients, while bone scaffold materials lack osteogenic activity, resulting in a limited application. Loaded with osteogenic induction growth factor can improve the osteoinductive performance of bone graft, but the explosive release of growth factor may also cause side effects. In this study, we innovatively used platelet-rich fibrin (PRF)-modified bone scaffolds (Bio-Oss®) to replace autograft, and used cytokine (BMP-2) to enhance osteogenesis. Encouragingly, this mixture, which we named “Autograft Mimic (AGM)”, has multiple functions and advantages. (1) The fiber network provided by PRF binds the entire bone scaffold together, thereby shaping the bone grafts and maintaining the space of the defect area. (2) The sustained release of BMP-2 from bone graft promoted bone regeneration continuously. (3) AGM recruited bone marrow mesenchymal stem cells (BMSCs) and promote their proliferation, migration, and osteogenic differentiation. Thus, AGM developed in this study can improve osteogenesis, and provide new guidance for the development of clinical bone grafts.
Collapse
|
7
|
Extracellular matrix scaffold crosslinked with vancomycin for multifunctional antibacterial bone infection therapy. Biomaterials 2020; 268:120603. [PMID: 33378735 DOI: 10.1016/j.biomaterials.2020.120603] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
The treatment of acute and chronic bone infections remains a major clinical challenge. The various factors released by the bacteria, acidic environment, and bacterial colonies in the bone grooves and implanted synthetic materials collectively promote the formation of biofilms. Dormant bacteria and biofilms cause infections that are difficult to cure and that can develop chronically. Therefore, a new antibacterial material was synthesized in the present study for multifunctional bone infection therapy and consists of specific demineralized extracellular cancellous bone (SDECM) crosslinked with vancomycin (Van) by means of electrostatic interactions and chemical bonds. It was verified in vitro that the new material (Van-SDECM) not only has pH-sensitive release and biofilm inhibition properties, but also maintains sustained bactericidal ability accompanied by the degradation of the scaffold, which does not affect its favorable osteogenic performance. The infectious bone defect in vivo model further confirms the comprehensive anti-infective and osteogenic ability of the Van-SDECM. Further, these favorable properties are due to the pH-sensitive sustained release sterilization and scaffold contact antibacterial properties, accompanied by osteoclast activity inhibition, osteogenesis promotion and immunoregulation effects. This study provides a new drug-scaffold composite preparation method based on a native-derived extracellular matrix scaffold.
Collapse
|
8
|
Azam Bozorgi Zarrini, Bozorgi M, Khazaei M, Soleimani M. Decellularized Extracellular Matrices in Bone Tissue Engineering: From Cells to Tissues. Mini-Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x20060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Wei D, Hou J, Zheng K, Jin X, Xie Q, Cheng L, Sun X. Suicide Gene Therapy Against Malignant Gliomas by the Local Delivery of Genetically Engineered Umbilical Cord Mesenchymal Stem Cells as Cellular Vehicles. Curr Gene Ther 2020; 19:330-341. [PMID: 31657679 DOI: 10.2174/1566523219666191028103703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant tumor that is difficult to eliminate, and new therapies are thus strongly desired. Mesenchymal stem cells (MSCs) have the ability to locate to injured tissues, inflammation sites and tumors and are thus good candidates for carrying antitumor genes for the treatment of tumors. Treating GBM with MSCs that have been transduced with the herpes simplex virus thymidine kinase (HSV-TK) gene has brought significant advances because MSCs can exert a bystander effect on tumor cells upon treatment with the prodrug ganciclovir (GCV). OBJECTIVE In this study, we aimed to determine whether HSV-TK-expressing umbilical cord mesenchymal stem cells (MSCTKs) together with prodrug GCV treatment could exert a bystander killing effect on GBM. METHODS AND RESULTS Compared with MSCTK: U87 ratio at 1:10,1:100 and 1:100, GCV concentration at 2.5µM or 250µM, when MSCTKs were cocultured with U87 cells at a ratio of 1:1, 25 µM GCV exerted a more stable killing effect. Higher amounts of MSCTKs cocultured with U87 cells were correlated with a better bystander effect exerted by the MSCTK/GCV system. We built U87-driven subcutaneous tumor models and brain intracranial tumor models to evaluate the efficiency of the MSCTK/GCV system on subcutaneous and intracranial tumors and found that MSCTK/GCV was effective in both models. The ratio of MSCTKs and tumor cells played a critical role in this therapeutic effect, with a higher MSCTK/U87 ratio exerting a better effect. CONCLUSION This research suggested that the MSCTK/GCV system exerts a strong bystander effect on GBM tumor cells, and this system may be a promising assistant method for GBM postoperative therapy.
Collapse
Affiliation(s)
- Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - JiaLi Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| |
Collapse
|
10
|
Peng Y, Huang D, Liu S, Li J, Qing X, Shao Z. Biomaterials-Induced Stem Cells Specific Differentiation Into Intervertebral Disc Lineage Cells. Front Bioeng Biotechnol 2020; 8:56. [PMID: 32117935 PMCID: PMC7019859 DOI: 10.3389/fbioe.2020.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy, which promotes stem cells differentiation toward specialized cell types, increases the resident population and production of extracellular matrix, and can be used to achieve intervertebral disc (IVD) repair, has drawn great attention for the development of IVD-regenerating materials. Many materials that have been reported in IVD repair have the ability to promote stem cells differentiation. However, due to the limitations of mechanical properties, immunogenicity and uncontrollable deviations in the induction of stem cells differentiation, there are few materials that can currently be translated into clinical applications. In addition to the favorable mechanical properties and biocompatibility of IVD materials, maintaining stem cells activity in the local niche and increasing the ability of stem cells to differentiate into nucleus pulposus (NP) and annulus fibrosus (AF) cells are the basis for promoting the application of IVD-regenerating materials in clinical practice. The purpose of this review is to summarize IVD-regenerating materials that focus on stem cells strategies, analyze the properties of these materials that affect the differentiation of stem cells into IVD-like cells, and then present the limitations of currently used disc materials in the field of stem cell therapy and future research perspectives.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
In Vitro Evaluation of a Novel Osteo-Inductive Scaffold for Osteogenic Differentiation of Bone-Marrow Mesenchymal Stem Cells. J Craniofac Surg 2020; 31:577-582. [PMID: 31895856 DOI: 10.1097/scs.0000000000006133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Demineralized bone matrices (DBMs) were demonstrated to be a promising candidate for bone regeneration by previous studies. However, the limited osteoinductivity of DBMs was insufficient for a better repairing of bone defect. Osteoblasts (OBs), the major cellular component of bone tissues, play an important role in the formation of new bone. The extracellular matrix (ECM) of OB is one of the main components of bone formation niche. OBJECTIVE To combine the DBMs with the ECM of OBs to construct a novel scaffold that could be used for bone reconstruction. METHODS In this study, OBs were cultured on the surface of DBMs for 10 days and removed by Triton X-100 and ammonium hydroxide to prepare the OBs-ECM-DBMs (OEDBMs). A series of material features such as residues of OBs and ECM, cytotoxity, and osteoinductive capability of OEDBMs were evaluated. RESULTS Low cell residues and low content of DNA were observed in OEDBMs. Compared with DBMs, OEDBMs possessed more bone tissues organic matrix proteins, such as osteocalcin, osteopontin, and collagen I. Rat bone marrow mesenchymal stem cells (rBMSCs) presented a good viability when cultured on both 2 materials. The significant upregulations of osteogenic genes and proteins of rBMSCs were observed in OEDBMs group compared with DBMs group. CONCLUSION Taken together, these findings suggested that the OB-secreted ECM may be qualified as an ideal modification method for enhancing the performance of engineered bone scaffold.
Collapse
|