1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Hamada M, Orimoto G, Yoshida S. Click assembly through selective azaylide formation. Chem Commun (Camb) 2024; 60:7930-7933. [PMID: 38984520 DOI: 10.1039/d4cc02723j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
An efficient triple-click assembly using a newly designed trivalent platform is disclosed. We achieved the selective azaylide formation of 2,3,5,6-tetrafluorophenyl azides with o-ester-substituted triarylphosphines leaving 2,6-dichlorophenyl azides untouched. Further rapid Staudinger reaction of dichlorophenyl azides and subsequent triazole formation allowed us to prepare trifunctionalized molecules in three steps.
Collapse
Affiliation(s)
- Mayo Hamada
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Gaku Orimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
3
|
Blázquez-Martín A, Bonardd S, Verde-Sesto E, Arbe A, Pomposo JA. Trimethylsilanol Cleaves Stable Azaylides As Revealed by Unfolding of Robust "Staudinger" Single-Chain Nanoparticles. ACS POLYMERS AU 2024; 4:140-148. [PMID: 38618005 PMCID: PMC11010256 DOI: 10.1021/acspolymersau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024]
Abstract
Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Sebastián Bonardd
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
4
|
Suzuki H, Akiyama Y, Yamashina M, Tanaka Y, Toyota S. Transformation of Highly Hydrophobic Triarylphosphines into Amphiphiles via Staudinger Reaction with Hydrophilic Trichlorophenyl Azide. Chemistry 2023; 29:e202303017. [PMID: 37766651 DOI: 10.1002/chem.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.
Collapse
Affiliation(s)
- Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
5
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Luo W, Xu F, Wang Z, Pang J, Wang Z, Sun Z, Peng A, Cao X, Li L. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL-D05139β Potassium Salt. Angew Chem Int Ed Engl 2023; 62:e202310118. [PMID: 37594845 DOI: 10.1002/anie.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Collapse
Affiliation(s)
- Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zixu Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhixiu Sun
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Aiyun Peng
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
7
|
Labiche A, Norlöff M, Feuillastre S, Taran F, Audisio D. Continuous Flow Synthesis of Non‐Symmetrical Ureas from CO
2. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Maylis Norlöff
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Sophie Feuillastre
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Frederic Taran
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| |
Collapse
|
8
|
Qiu X, Brückel J, Zippel C, Nieger M, Biedermann F, Bräse S. Tris(4-azidophenyl)methanol - a novel and multifunctional thiol protecting group. RSC Adv 2023; 13:2483-2486. [PMID: 36741178 PMCID: PMC9844210 DOI: 10.1039/d2ra05997e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The novel tris(4-azidophenyl)methanol, a multifunctionalisable aryl azide, is reported. The aryl azide can be used as a protecting group for thiols in peptoid synthesis and can be cleaved under mild reaction conditions via a Staudinger reduction. Moreover, the easily accessible aryl azide can be functionalised via copper-catalysed cycloaddition reactions, providing additional opportunities for materials chemistry applications.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Julian Brückel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Christoph Zippel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Martin Nieger
- Department of Chemistry, University of HelsinkiP. O. Box 55 (A. I. Virtasen aukio 1)00014Finland
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903,Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| |
Collapse
|
9
|
Dorn RS, Prescher JA. Bioorthogonal Phosphines: Then and Now. Isr J Chem 2022. [DOI: 10.1002/ijch.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert S. Dorn
- Departments of Chemistry University of California Irvine California 92697 United States
| | - Jennifer A. Prescher
- Departments of Chemistry University of California Irvine California 92697 United States
- Molecular Biology & Biochemistry University of California Irvine California 92697 United States
- Pharmaceutical Sciences University of California Irvine California 92697 United States
| |
Collapse
|
10
|
Ortho-Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175707. [PMID: 36080474 PMCID: PMC9458194 DOI: 10.3390/molecules27175707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Conventional Staudinger reductions of organic azides are sluggish with aryl or bulky aliphatic azides. In addition, Staudinger reduction usually requires a large excess of water to promote the decomposition of the aza-ylide intermediate into phosphine oxide and amine products. To overcome the challenges above, we designed a novel triaryl phosphine reagent 2c with an ortho-SO2NH2 substituent. Herein, we report that such phosphine reagents are able to mediate the Staudinger reduction of both aryl and alkyl azides in either anhydrous or wet solvents. Good to excellent yields were obtained in all cases (even at a diluted concentration of 0.01 M). The formation of B-TAP, a cyclic aza-ylide, instead of phosphine oxide, eliminates the requirement of water in the Staudinger reduction. In addition, computational studies disclose that the intramolecular protonation of the aza-ylide by the ortho-SO2NH2 group is kinetically favorable and responsible for the acceleration of Staudinger reduction of the aryl azides.
Collapse
|
11
|
Yamashina M, Suzuki H, Kishida N, Yoshizawa M, Toyota S. Synthesis of Azaylide‐Based Amphiphiles by the Staudinger Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masahiro Yamashina
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| | - Hayate Suzuki
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Shinji Toyota
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152–8551 Japan
| |
Collapse
|
12
|
Yamashina M, Suzuki H, Kishida N, Yoshizawa M, Toyota S. Synthesis of Azaylide-Based Amphiphiles by the Staudinger Reaction. Angew Chem Int Ed Engl 2021; 60:17915-17919. [PMID: 34018299 DOI: 10.1002/anie.202105094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Catalyst- and reagent-free reactions are powerful tools creating various functional molecules and materials. However, such chemical bonds are usually hydrolysable or require specific functional groups, which limits their use in aqueous media. Herein, we report the development of new amphiphiles through the Staudinger reaction. Simple mixing of chlorinated aryl azide with a hydrophilic moiety and various triarylphosphines (PAr3) gave rise to azaylide-based amphiphiles NPAr3, rapidly and quantitatively. The obtained NPAr3 formed ca. 2 nm-sized spherical aggregates (NPAr3)n in water. The hydrolysis of NPAr3 was significantly suppressed as compared with those of non-chlorinated amphiphiles nNPAr3. Computational studies revealed that the stability is mainly governed by the decrease in LUMO around the phosphorus atom owing to the o-substituted halogen groups. Furthermore, hydrophobic dyes such as Nile red and BODIPY were encapsulated by the spherical aggregates (NPAr3)n in water.
Collapse
Affiliation(s)
- Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
13
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
14
|
Aimi T, Meguro T, Kobayashi A, Hosoya T, Yoshida S. Nucleophilic transformations of azido-containing carbonyl compounds via protection of the azido group. Chem Commun (Camb) 2021; 57:6062-6065. [PMID: 34036976 DOI: 10.1039/d1cc01143j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleophilic transformations of azido-containing carbonyl compounds are discussed. The phosphazide formation from azides and di(tert-butyl)(4-(dimethylamino)phenyl)phosphine (Amphos) enabled transformations of carbonyl groups with nucleophiles such as lithium aluminum hydride and organometallic reagents. The good stability of the phosphazide moiety allowed us to perform consecutive transformations of a diazide through triazole formation and the Grignard reaction.
Collapse
Affiliation(s)
- Takahiro Aimi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | |
Collapse
|
15
|
Yoshida S, Sakata Y, Misawa Y, Morita T, Kuribara T, Ito H, Koike Y, Kii I, Hosoya T. Assembly of four modules onto a tetraazide platform by consecutive 1,2,3-triazole formations. Chem Commun (Camb) 2021; 57:899-902. [PMID: 33367381 DOI: 10.1039/d0cc07789e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient consecutive 1,2,3-triazole formations using multiazide platforms are disclosed. On the basis of unique clickability of the 1-adamantyl azido group, a four-step synthesis of tetrakis(triazole)s was achieved from a tetraazide platform molecule. This method was applied to a convergent synthesis of tetrafunctionalized probes in a modular synthetic manner.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yoshihiro Misawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan. and Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuka Koike
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
16
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
18
|
Takemura H, Goto S, Hosoya T, Yoshida S. 2-Azidoacrylamides as compact platforms for efficient modular synthesis. Chem Commun (Camb) 2020; 56:15541-15544. [PMID: 33241832 DOI: 10.1039/d0cc07212e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient methods to assemble modules with compact platform molecules by triazole formations and Michael reactions are disclosed. The good electrophilicity of 2-triazolylacrylamides realized Michael additions using various nucleophiles. An iterative synthesis of a tetrakis(triazole) was accomplished by orthogonal triazole formations and Michael reactions.
Collapse
Affiliation(s)
- Hinano Takemura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
19
|
Terashima N, Sakata Y, Meguro T, Hosoya T, Yoshida S. Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper. Chem Commun (Camb) 2020; 56:14003-14006. [PMID: 33094760 DOI: 10.1039/d0cc06551j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient preparation method of functionalized phosphines by copper-catalyzed azide-alkyne cycloaddition (CuAAC) through the transient protection of phosphine from the Staudinger reaction is disclosed. Diverse phosphines were prepared from phosphinyl alkynes and azides by the click reaction at the ethynyl group without damaging the phosphinyl group. Double- and triple-click assemblies of azides were accomplished by triazole formations and robust azaylide formation.
Collapse
Affiliation(s)
- Norikazu Terashima
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
20
|
Makio N, Sakata Y, Kuribara T, Adachi K, Hatakeyama Y, Meguro T, Igawa K, Tomooka K, Hosoya T, Yoshida S. (Hexafluoroacetylacetonato)copper(I)-cycloalkyne complexes as protected cycloalkynes. Chem Commun (Camb) 2020; 56:11449-11452. [PMID: 32852507 DOI: 10.1039/d0cc05182a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protection method for cycloalkynes by the formation of (hexafluoroacetylacetonato)copper(i)-cycloalkyne complexes is disclosed. Various complexes having functional groups were efficiently prepared, which are easily purified by silica-gel column chromatography. Selective click reactions were realized through the complexation of cycloalkynes with copper.
Collapse
Affiliation(s)
- Naoaki Makio
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
21
|
Adachi K, Meguro T, Sakata Y, Igawa K, Tomooka K, Hosoya T, Yoshida S. Selective strain-promoted azide-alkyne cycloadditions through transient protection of bicyclo[6.1.0]nonynes with silver or gold. Chem Commun (Camb) 2020; 56:9823-9826. [PMID: 32716445 DOI: 10.1039/d0cc04606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complexation of bicyclo[6.1.0]nonynes with a cationic silver or gold salt results in protection from a click reaction with azides. The cycloalkyne protection using the silver or gold salt enables selective strain-promoted azide-alkyne cycloadditions of diynes keeping the bicyclo[6.1.0]nonyne moiety unreacted.
Collapse
Affiliation(s)
- Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
22
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Hsia LY, Chen HN, Chiang CH, Hung MY, Wei HK, Luo CW, Kuo MY, Luo SY, Chu CC. π-Extended Coumarins Derived with Nonhydrolyzable Iminophosphoranes as Two-Photon-Excited Fluorophores. J Org Chem 2020; 85:9361-9366. [PMID: 32512991 DOI: 10.1021/acs.joc.0c00901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel coumarin-iminophosphorane (IPP) fluorophores that have stable resonance contributions from aza-ylides were formed by using the nonhydrolysis Staudinger reaction. The N═P formation reaction kinetics obey the conventional Staudinger reaction. The absorption and emission profiles of the coumarin-IPP derivatives can be fine-tuned: an electron-donating group at PPh3 enhances absorption and fluorescence, whereas an electron-withdrawing group at C-3 drives absorption and emission peaks toward blue-light wavelengths. Two-photon adsorption, accompanied by anti-Stokes fluorescence, is achieved under near-infrared femtosecond laser excitation.
Collapse
Affiliation(s)
- Liang-Yu Hsia
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Hsin-Ni Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chun-Hao Chiang
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Ming-Yang Hung
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Keng Wei
- Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Yu Kuo
- Department of Applied Chemistry, National Chi Nan University, Puli 545, Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University, Taichung 403, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
24
|
Kang X, Cai X, Yi L, Xi Z. Multifluorinated Aryl Azides for the Development of Improved H 2 S Probes, and Fast Strain-promoted Azide-Alkyne Cycloaddition and Staudinger Reactions. Chem Asian J 2020; 15:1420-1429. [PMID: 32144862 DOI: 10.1002/asia.202000005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022]
Abstract
The development of advanced bioorthogonal reactions for detection and labeling of biomolecules is significant in chemical biology. Recently, researchers have found that multifluorinated aryl azides hold great potential for the development of improved bioorthogonal reactions. The fluorine atom can be a perfect substituent group because of its properties of excellent electronegativity and small steric hindrance. In this Minireview, we discuss recent developments of improved hydrogen sulfide (H2 S) fluorescence probes, fast strain-promoted azide-alkyne cycloaddition (SPAAC) and nonhydrolysis Staudinger reactions based on the use of multifluorinated aryl azides. Additionally, kinetic studies and biological applications of these reactions are also presented.
Collapse
Affiliation(s)
- Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Beijing, 100029, China
| | - Xuekang Cai
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Beijing, 100029, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Beijing, 100029, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
25
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
26
|
Meguro T, Sakata Y, Morita T, Hosoya T, Yoshida S. Facile assembly of three cycloalkyne-modules onto a platform compound bearing thiophene S,S-dioxide moiety and two azido groups. Chem Commun (Camb) 2020; 56:4720-4723. [DOI: 10.1039/d0cc01810d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient method to assemble three cycloalkyne-modules onto a platform bearing a thiophene S,S-dioxide moiety and two azido groups has been developed. The sequential reactions without catalysis or additives enabled the facile preparation of trifunctional molecules by a simple procedure.
Collapse
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| |
Collapse
|
27
|
Camacho LA, Nguyen YH, Turner J, VanVeller B. Deprotection Strategies for Thioimidates during Fmoc Solid-Phase Peptide Synthesis: A Safe Route to Thioamides. J Org Chem 2019; 84:15309-15314. [DOI: 10.1021/acs.joc.9b02317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luis A. Camacho
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yen H. Nguyen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - John Turner
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Yoshida S, Goto S, Nishiyama Y, Hazama Y, Kondo M, Matsushita T, Hosoya T. Effect of Resonance on the Clickability of Alkenyl Azides in the Strain-promoted Cycloaddition with Dibenzo-fused Cyclooctynes. CHEM LETT 2019. [DOI: 10.1246/cl.190400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Sayuri Goto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kondo
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takeshi Matsushita
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
29
|
Yoshida S, Kuribara T, Ito H, Meguro T, Nishiyama Y, Karaki F, Hatakeyama Y, Koike Y, Kii I, Hosoya T. A facile preparation of functional cycloalkynes via an azide-to-cycloalkyne switching approach. Chem Commun (Camb) 2019; 55:3556-3559. [DOI: 10.1039/c9cc01113g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Terminal alkyne-selective click conjugation of diynes bearing strained and terminal alkyne moieties with functional azides has been achieved by transient protection of strained alkynes via complexation with copper to easily afford various functional cycloalkynes.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Pathophysiological and Health Science
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Fumika Karaki
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yuka Koike
- Common Facilities Unit
- Compass to Healthy Life Research Complex Program
- RIKEN Cluster for Science
- Technology and Innovation Hub
- Kobe 650-0047
| | - Isao Kii
- Laboratory for Pathophysiological and Health Science
- RIKEN Center for Biosystems Dynamics Research (BDR)
- Kobe 650-0047
- Japan
- Common Facilities Unit
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Chemical Biology
| |
Collapse
|
30
|
Hosoya T, Yoshida S, Nishiyama Y, Misawa Y, Hazama Y, Oya K. Synthesis of Diverse 3-Azido-5-(azidomethyl)benzene Derivatives via Formal C–H Azidation and Functional Group-Selective Transformations. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Cheng L, Kang X, Wang D, Gao Y, Yi L, Xi Z. The one-pot nonhydrolysis Staudinger reaction and Staudinger or SPAAC ligation. Org Biomol Chem 2019; 17:5675-5679. [DOI: 10.1039/c9ob00528e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The one-pot nonhydrolysis Staudinger reaction and Staudinger or SPAAC ligation were used for producing a FRET-based dyad in living cells as a proof-of-concept study.
Collapse
Affiliation(s)
- Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xueying Kang
- State Key Laboratory of Organic–Inorganic Composites and Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Dan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yasi Gao
- State Key Laboratory of Organic–Inorganic Composites and Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites and Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Engineering Research Center of Pesticide (Tianjin)
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
32
|
Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. J Org Chem 2018; 83:12103-12121. [DOI: 10.1021/acs.joc.8b02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tomomi Ueda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
33
|
Meguro T, Yoshida S, Igawa K, Tomooka K, Hosoya T. Transient Protection of Organic Azides from Click Reactions with Alkynes by Phosphazide Formation. Org Lett 2018; 20:4126-4130. [DOI: 10.1021/acs.orglett.8b01692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
34
|
Yoshida S, Tanaka J, Nishiyama Y, Hazama Y, Matsushita T, Hosoya T. Further enhancement of the clickability of doubly sterically-hindered aryl azides by para-amino substitution. Chem Commun (Camb) 2018; 54:13499-13502. [DOI: 10.1039/c8cc05791e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction of an amino group at the para position of doubly sterically-hindered aryl azides significantly enhances their clickability with cyclooctynes.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Junko Tanaka
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | | | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| |
Collapse
|