1
|
Živančević K, Aru B, Demir A, Radenović L, Andjus P, Demirel GY. Zn 0-Induced Cytotoxicity and Mitochondrial Stress in Microglia: Implications of the Protective Role of Immunoglobulin G In Vitro. Balkan Med J 2024; 41:348-356. [PMID: 39129512 PMCID: PMC11588912 DOI: 10.4274/balkanmedj.galenos.2024.2024-4-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Zinc (Zn), an essential micronutrient, regulates and maintains neurological functions. However, both Zn deficiency and excess can cause oxidative stress and neurodegenerative diseases. As previously reported, immunoglobulin G (IgG) can modulate oxidative stress in various disorders. Aims To investigate whether IgG treatment can alleviate oxidative stress caused by Zn0 on microglia in vitro. Study Design In vitro study. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Results: In silico screening confirmed the association between Zn0 cytotoxicity and apoptosis. Furthermore, oxidative stress was identified as a critical mechanism that underlies Zn0 neurotoxicity. The in silico analysis revealed that Zn can interact with the constant region of the Ig heavy chain, suggesting a potential role for IgG in alleviating Zn0-induced cytotoxicity. Experimental findings supported this hypothesis, as IgG administration significantly reduced Zn0-induced mitochondrial stress in a dose-dependent manner. The upregulation of PINK1 levels by Zn0 exposure suggests that mitochondrial injury promotes mitophagy. Interestingly, Zn0 decreased TRIM21 levels, which is reversed by IgG administration. Conclusion These findings elucidate the cellular responses to Zn0 and highlight the potential use of intravenous immunoglobulin in mitigating the adverse effects of acute Zn0 exposure.
Collapse
Affiliation(s)
- Katarina Živančević
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
| | - Abdullah Demir
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| | - Lidija Radenović
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Gülderen Yanıkkaya Demirel
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
2
|
Coupland CA, Naylor-Adamson L, Booth Z, Price TW, Gil HM, Firth G, Avery M, Ahmed Y, Stasiuk GJ, Calaminus SDJ. Platelet zinc status regulates prostaglandin-induced signaling, altering thrombus formation. J Thromb Haemost 2023; 21:2545-2558. [PMID: 37210073 DOI: 10.1016/j.jtha.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Approximately 17.3% of the global population exhibits an element of zinc (Zn2+) deficiency. One symptom of Zn2+ deficiency is increased bleeding through impaired hemostasis. Platelets are crucial to hemostasis and are inhibited by endothelial-derived prostacyclin (prostaglandin I2 [PGI2]), which signals via adenylyl cyclase (AC) and cyclic adenosine monophosphate signaling. In other cell types, Zn2+ modulates cyclic adenosine monophosphate concentrations by changing AC and/or phosphodiesterase activity. OBJECTIVES To investigate if Zn2+ can modulate platelet PGI2 signaling. METHODS Platelet aggregation, spreading, and western blotting assays with Zn2+ chelators and cyclic nucleotide elevating agents were performed in washed platelets and platelet-rich plasma conditions. In vitro thrombus formation with various Zn2+ chelators and PGI2 was assessed in whole blood. RESULTS Incubation of whole blood or washed platelets with Zn2+ chelators caused either embolization of preformed thrombi or reversal of platelet spreading, respectively. To understand this effect, we analyzed resting platelets and identified that incubation with Zn2+ chelators elevated pVASPser157, a marker of PGI2 signaling. In agreement that Zn2+ affects PGI2 signaling, addition of the AC inhibitor SQ22536 blocked Zn2+ chelation-induced platelet spreading reversal, while addition of Zn2+ blocked PGI2-mediated platelet reversal. Moreover, Zn2+ specifically blocked forskolin-mediated AC reversal of platelet spreading. Finally, PGI2 inhibition of platelet aggregation and in vitro thrombus formation was potentiated in the presence of low doses of Zn2+ chelators, increasing its effectiveness in inducing platelet inhibition. CONCLUSION Zn2+ chelation potentiates platelet PGI2 signaling, elevating PGI2's ability to prevent effective platelet activation, aggregation, and thrombus formation.
Collapse
Affiliation(s)
- Charlie A Coupland
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | | | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Helio M Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - George Firth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michelle Avery
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Yusra Ahmed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
3
|
Firth G, Georgiadou E, Griffiths A, Amrahli M, Kim J, Yu Z, Hu M, Stewart TJ, Leclerc I, Okamoto H, Gomez D, Blower PJ, Rutter GA. Impact of an SLC30A8 loss-of-function variant on the pancreatic distribution of zinc and manganese: laser ablation-ICP-MS and positron emission tomography studies in mice. Front Endocrinol (Lausanne) 2023; 14:1171933. [PMID: 37396167 PMCID: PMC10313231 DOI: 10.3389/fendo.2023.1171933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 μl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic β-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Maral Amrahli
- London Metallomics Facility, King’s College London, London, United Kingdom
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Zilin Yu
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Daniel Gomez
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological, University, Singapore, Singapore
| |
Collapse
|
4
|
Firth G, Yu Z, Bartnicka JJ, Parker D, Kim J, Sunassee K, Greenwood HE, Al-Salamee F, Jauregui-Osoro M, Di Pietro A, Guzman J, Blower PJ. Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 2022; 14:mfac076. [PMID: 36201445 PMCID: PMC9578021 DOI: 10.1093/mtomcs/mfac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Non-invasive imaging techniques to dynamically map whole-body trafficking of essential metals in vivo in health and diseases are needed. Despite 62Zn having appropriate physical properties for positron emission tomography (PET) imaging (half-life, 9.3 h; positron emission, 8.2%), its complex decay via 62Cu (half-life, 10 min; positron emission, 97%) has limited its use. We aimed to develop a method to extract 62Zn from a 62Zn/62Cu generator, and to investigate its use for in vivo imaging of zinc trafficking despite its complex decay. 62Zn prepared by proton irradiation of natural copper foil was used to construct a conventional 62Zn/62Cu generator. 62Zn was eluted using trisodium citrate and used for biological experiments, compared with 64Cu in similar buffer. PET/CT imaging and ex vivo tissue radioactivity measurements were performed following intravenous injection in healthy mice. [62Zn]Zn-citrate was readily eluted from the generator with citrate buffer. PET imaging with the eluate demonstrated biodistribution similar to previous observations with the shorter-lived 63Zn (half-life 38.5 min), with significant differences compared to [64Cu]Cu-citrate, notably in pancreas (>10-fold higher at 1 h post-injection). Between 4 and 24 h, 62Zn retention in liver, pancreas, and kidney declined over time, while brain uptake increased. Like 64Cu, 62Zn showed hepatobiliary excretion from liver to intestines, unaffected by fasting. Although it offers limited reliability of scanning before 1 h post-injection, 62Zn-PET allows investigation of zinc trafficking in vivo for >24 h and hence provides a useful new tool to investigate diseases where zinc homeostasis is disrupted in preclinical models and humans.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Zilin Yu
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - David Parker
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Fahad Al-Salamee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Maite Jauregui-Osoro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Alberto Di Pietro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna Guzman
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
5
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
6
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
7
|
Li L, Wang J, Xu S, Li C, Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front Chem 2022; 10:875241. [PMID: 35494640 PMCID: PMC9043490 DOI: 10.3389/fchem.2022.875241] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
All forms of life have absolute request for metal elements, because metal elements are instrumental in various fundamental processes. Fluorescent probes have been widely used due to their ease of operation, good selectivity, high spatial and temporal resolution, and high sensitivity. In this paper, the research progress of various metal ion (Fe3+,Fe2+,Cu2+,Zn2+,Hg2+,Pb2+,Cd2+) fluorescent probes in recent years has been reviewed, and the fluorescence probes prepared with different structures and materials in different environments are introduced. It is of great significance to improve the sensing performance on metal ions. This research has a wide prospect in the application fields of fluorescence sensing, quantitative analysis, biomedicine and so on. This paper discusses about the development and applications of metal fluorescent probes in future.
Collapse
Affiliation(s)
- Luanjing Li
- Sdu-Anu Joint Science College, Shandong University, Weihai, China
| | - Jiahe Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Chunxia Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
8
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
9
|
Huang JD, Cheng S, Li W, Lin F, Ma H, Dong B. Fluorescence enhancement mechanism of thymolphthalein-based probe by coordination interaction with zinc ion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Wang G, Angelovski G. Highly Potent MRI Contrast Agent Displaying Outstanding Sensitivity to Zinc Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gaoji Wang
- MR Neuroimaging Agents Max Planck Institute for Biological Cybernetics Tuebingen Germany
| | - Goran Angelovski
- MR Neuroimaging Agents Max Planck Institute for Biological Cybernetics Tuebingen Germany
- Laboratory of Molecular and Cellular Neuroimaging International Center for Primate Brain Research (ICPBR) Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) Chinese Academy of Science (CAS) Shanghai P. R. China
| |
Collapse
|
11
|
Wang G, Angelovski G. Highly Potent MRI Contrast Agent Displaying Outstanding Sensitivity to Zinc Ions. Angew Chem Int Ed Engl 2021; 60:5734-5738. [PMID: 33226707 PMCID: PMC7986093 DOI: 10.1002/anie.202014431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Zinc ions play an important role in numerous crucial biological processes in the human body. The ability to image the function of Zn2+ would be a significant asset to biomedical research for monitoring various physiopathologies dependent on its fate. To this end, we developed a novel Gd3+ chelate that can selectively recognize Zn2+ over other abundant endogenous metal ions and alter its paramagnetic properties. More specifically, this lanthanide chelate displayed an extraordinary increase in longitudinal relaxivity (r1 ) of over 400 % upon interaction with Zn2+ at 7 T and 25 °C, which is the greatest r1 enhancement observed for any of the metal ion-responsive Gd-based complexes at high magnetic field. A "turn-on" mechanism responsible for these massive changes was confirmed through NMR and luminescence lifetime studies on a 13 C-labeled Eu3+ analogue. This molecular platform represents a new momentum in developing highly suitable magnetic resonance imaging contrast agents for functional molecular imaging studies of Zn2+ .
Collapse
Affiliation(s)
- Gaoji Wang
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P. R. China
| |
Collapse
|
12
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
13
|
Munch M, Rotstein BH, Ulrich G. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020; 25:E6042. [PMID: 33371284 PMCID: PMC7766373 DOI: 10.3390/molecules25246042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer's disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter). This review focuses on the recent efforts in the synthesis and radiofluorination of fluorescent scaffolds such as 4,4-difluoro-4-bora-diazaindacenes (BODIPYs), cyanines, and xanthene derivatives and their use in preclinical imaging studies using both PET and OPI technologies.
Collapse
Affiliation(s)
- Maxime Munch
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France;
| |
Collapse
|
14
|
Park SH, Kwon N, Lee JH, Yoon J, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 2020; 49:143-179. [PMID: 31750471 DOI: 10.1039/c9cs00243j] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal cations and anions are essential for versatile physiological processes. Dysregulation of specific ion levels in living organisms is known to have an adverse effect on normal biological events. Owing to the pathophysiological significance of ions, sensitive and selective methods to detect these species in biological systems are in high demand. Because they can be used in methods for precise and quantitative analysis of ions, organic dye-based ratiometric fluorescent probes have been extensively explored in recent years. In this review, recent advances (2015-2019) made in the development and biological applications of synthetic ratiometric fluorescent probes are described. Particular emphasis is given to organic dye-based ratiometric fluorescent probes that are designed to detect biologically important and relevant ions in cells and living organisms. Also, the fundamental principles associated with the design of ratiometric fluorescent probes and perspectives about how to expand their biological applications are discussed.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | | | | | |
Collapse
|
15
|
A quinoline-based selective ‘turn on’ chemosensor for zinc(II) via quad-core complex, and its application in live cell imaging. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Kang T, Wang H, Wang X, Feng L. A facile Zn(II) probe based on intramolecular charge transfer with fluorescence red-shift. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Yun JY, Kim A, Hwang SM, Yun D, Lee H, Kim KT, Kim C. A Novel Benzimidazole-Based Fluorescence Probe for Detecting Zinc Ion in Aqueous Solution and Zebrafish. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Yeong Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ahran Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Suh Mi Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Dongju Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
18
|
Zhang G, Zhao Y, Peng B, Li Z, Xu C, Liu Y, Zhang C, Voelcker NH, Li L, Huang W. A fluorogenic probe based on chelation–hydrolysis-enhancement mechanism for visualizing Zn2+ in Parkinson's disease models. J Mater Chem B 2019; 7:2252-2260. [DOI: 10.1039/c8tb03343a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing efficient methods for real-time detection of Zn2+ level in biological systems is highly relevant to improve our understanding of the role of Zn2+ in the progression of Parkinson's disease (PD).
Collapse
|
19
|
Liu H, Liu T, Li J, Zhang Y, Li J, Song J, Qu J, Wong WY. A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn 2+ and Al 3+ in living cells. J Mater Chem B 2018; 6:5435-5442. [PMID: 32254602 DOI: 10.1039/c8tb01743c] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple Schiff base fluorescent sensor (BDNOL) was synthesized from the reaction of picolinohydrazide and 4-(diethylamino)salicylaldehyde, and developed for selective detection of Al3+ and Zn2+. This non-fluorescent sensor displayed obvious fluorescence enhancement after binding to Al3+/Zn2+ ions with high sensitivity and selectivity, accompanied by obvious fluorescence emission enhancement (504 nm for Al3+ and 575 nm for Zn2+). The detection limits were found to be 8.30 × 10-8 M for Al3+ and 1.24 × 10-7 M for Zn2+. The binding mechanisms between BDNOL and Al3+/Zn2+ ions were supported by 1H NMR and HR-MS analysis, and a density functional theory (DFT) study. The sensing behavior was also studied with molecular logic functions of OR, AND, and NOT gates. Furthermore, the fluorescent sensor was successfully used to recognize Al3+ and Zn2+ in living cells, suggesting that this simple biosensor has great potential in biological imaging applications.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xing J, Gong Q, Zhang R, Sun S, Zou R, Wu A. A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging. Chem Commun (Camb) 2018; 54:8773-8776. [DOI: 10.1039/c8cc05048a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel non-enzymatic hydrolytic probe for DPP IV is obtained.
Collapse
Affiliation(s)
- Jie Xing
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Qiuyu Gong
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shan Sun
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Ruifen Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| |
Collapse
|