1
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Utschig LM, Mulfort KL. Photosynthetic biohybrid systems for solar fuels catalysis. Chem Commun (Camb) 2024; 60:10642-10654. [PMID: 39229971 DOI: 10.1039/d4cc00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photosynthetic reaction center (RC) proteins are finely tuned molecular systems optimized for solar energy conversion. RCs effectively capture and convert sunlight with near unity quantum efficiency utilizing light-induced directional electron transfer through a series of molecular cofactors embedded within the protein core to generate a long-lived charge separated state with a useable electrochemical potential. Of current interest are new strategies that couple RC chemistry to the direct synthesis of energy-rich compounds. This Feature Article highlights recent work from our lab on RC and RC-inspired hybrid systems that capture the Sun's energy and convert it to chemical energy in the form of H2, a carbon-neutral energy source derived from water. Biohybrids made from the Photosystem I (PSI) RC are among the best photocatalytic H2-producing protein hybrids to date. Targeted self-assembly strategies that couple abiotic catalysts to PSI translate to catalyst incorporation at intrinsic PSI sites within thylakoid membranes to achieve complete solar water-splitting systems. RC-inspired biohybrids interface synthetic photosensitizers and molecular catalysts with small proteins to create photocatalytic systems and enable the spectroscopic discernment of the structural features and electron transfer processes that underpin solar-driven proton reduction. In total, these studies showcase the incredible scientific opportunities photosynthetic biohybrid research provides for harnessing the optimal qualities of both artificial and natural photosynthetic systems and developing materials that capture, convert, and store solar energy as a fuel.
Collapse
Affiliation(s)
- Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
3
|
Terholsen H, Huerta-Zerón HD, Möller C, Junge H, Beller M, Bornscheuer UT. Photocatalytic CO 2 Reduction Using CO 2-Binding Enzymes. Angew Chem Int Ed Engl 2024; 63:e202319313. [PMID: 38324458 DOI: 10.1002/anie.202319313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Novel concepts to utilize carbon dioxide are required to reach a circular carbon economy and minimize environmental issues. To achieve these goals, photo-, electro-, thermal-, and biocatalysis are key tools to realize this, preferentially in aqueous solutions. Nevertheless, catalytic systems that operate efficiently in water are scarce. Here, we present a general strategy for the identification of enzymes suitable for CO2 reduction based on structural analysis for potential carbon dioxide binding sites and subsequent mutations. We discovered that the phenolic acid decarboxylase from Bacillus subtilis (BsPAD) promotes the aqueous photocatalytic CO2 reduction selectively to carbon monoxide in the presence of a ruthenium photosensitizer and sodium ascorbate. With engineered variants of BsPAD, TONs of up to 978 and selectivities of up to 93 % (favoring the desired CO over H2 generation) were achieved. Mutating the active site region of BsPAD further improved turnover numbers for CO generation. This also revealed that electron transfer is rate-limiting and occurs via multistep tunneling. The generality of this approach was proven by using eight other enzymes, all showing the desired activity underlining that a range of proteins is capable of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | | | - Christina Möller
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Henrik Junge
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
4
|
Labidi RJ, Faivre B, Carpentier P, Veronesi G, Solé-Daura A, Bjornsson R, Léger C, Gotico P, Li Y, Atta M, Fontecave M. Light-Driven Hydrogen Evolution Reaction Catalyzed by a Molybdenum-Copper Artificial Hydrogenase. J Am Chem Soc 2023. [PMID: 37307141 DOI: 10.1021/jacs.3c01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Orange protein (Orp) is a small bacterial metalloprotein of unknown function that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoS2CuS2MoS2]3-. In this paper, the performance of Orp as a catalyst for the photocatalytic reduction of protons into H2 has been investigated under visible light irradiation. We report the complete biochemical and spectroscopic characterization of holo-Orp containing the [S2MoS2CuS2MoS2]3- cluster, with docking and molecular dynamics simulations suggesting a positively charged Arg, Lys-containing pocket as the binding site. Holo-Orp exhibits excellent photocatalytic activity, in the presence of ascorbate as the sacrificial electron donor and [Ru(bpy)3]Cl2 as the photosensitizer, for hydrogen evolution with a maximum turnover number of 890 after 4 h irradiation. Density functional theory (DFT) calculations were used to propose a consistent reaction mechanism in which the terminal sulfur atoms are playing a key role in promoting H2 formation. A series of dinuclear [S2MS2M'S2MS2](4n)- clusters, with M = MoVI, WVI and M'(n+) = CuI, FeI, NiI, CoI, ZnII, CdII were assembled in Orp, leading to different M/M'-Orp versions which are shown to display catalytic activity, with the Mo/Fe-Orp catalyst giving a remarkable turnover number (TON) of 1150 after 2.5 h reaction and an initial turnover frequency (TOF°) of 800 h-1 establishing a record among previously reported artificial hydrogenases.
Collapse
Affiliation(s)
- Raphaël J Labidi
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Philippe Carpentier
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Giulia Veronesi
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Ragnar Bjornsson
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, 13009 Marseille, France
| | - Philipp Gotico
- Laboratoire des Mécanismes Fondamentaux de la Bioénergétique, DRF/JOLIOT/SB2SM, UMR 9198 CEA/CNRS/I2BC, 91191 Gif Sur Yvette, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Mohamed Atta
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| |
Collapse
|
5
|
Deng Y, Dwaraknath S, Ouyang WO, Matsumoto CJ, Ouchida S, Lu Y. Engineering an Oxygen-Binding Protein for Photocatalytic CO 2 Reductions in Water. Angew Chem Int Ed Engl 2023; 62:e202215719. [PMID: 36916067 PMCID: PMC10946749 DOI: 10.1002/anie.202215719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
While native CO2 -reducing enzymes display remarkable catalytic efficiency and product selectivity, few artificial biocatalysts have been engineered to allow understanding how the native enzymes work. To address this issue, we report cobalt porphyrin substituted myoglobin (CoMb) as a homogeneous catalyst for photo-driven CO2 to CO conversion in water. The activity and product selectivity were optimized by varying pH and concentrations of the enzyme and the photosensitizer. Up to 2000 TON(CO) was attained at low enzyme concentrations with low product selectivity (15 %), while a product selectivity of 74 % was reached by increasing the enzyme loading but with a compromised TON(CO). The efficiency of CO generation and overall TON(CO) were further improved by introducing positively charged residues (Lys or Arg) near the active stie of CoMb, which demonstrates the value of tuning the enzyme secondary coordination sphere to enhance the CO2 -reducing performance of a protein-based photocatalytic system.
Collapse
Affiliation(s)
- Yunling Deng
- Department of ChemistryUniversity of Texas at AustinAustinTX 78712USA
| | - Sudharsan Dwaraknath
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Wenhao O. Ouyang
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Cory J. Matsumoto
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Stephanie Ouchida
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Yi Lu
- Department of ChemistryUniversity of Texas at AustinAustinTX 78712USA
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| |
Collapse
|
6
|
Lee J, Song WJ. Photocatalytic C-O Coupling Enzymes That Operate via Intramolecular Electron Transfer. J Am Chem Soc 2023; 145:5211-5221. [PMID: 36825656 DOI: 10.1021/jacs.2c12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Efficient and environmentally friendly conversion of light energy for direct utilization in chemical production has been a long-standing goal in enzyme design. Herein, we synthesized artificial photocatalytic enzymes by introducing an Ir photocatalyst and a Ni(bpy) complex to an optimal protein scaffold in close proximity. Consequently, the enzyme generated C-O coupling products with up to 96% yields by harvesting visible light and performing intramolecular electron transfer between the two catalysts. We systematically modulated the catalytic activities of the artificial photocatalytic cross-coupling enzymes by tuning the electrochemical properties of the catalytic components, their positions, and distances within a protein. As a result, we discovered the best-performing mutant that showed broad substrate scopes under optimized conditions. This work explicitly demonstrated that we could integrate and control both the inorganic and biochemical components of photocatalytic biocatalysis to achieve high yield and selectivity in valuable chemical transformations.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Treviño RE, Shafaat HS. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr Opin Chem Biol 2022; 67:102110. [PMID: 35101820 DOI: 10.1016/j.cbpa.2021.102110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here. This opinion is intended to highlight the advantages of using robust protein scaffolds for modeling multiscale contributions to reactivity and inspire the development of novel artificial metalloenzymes for other small molecule transformations.
Collapse
Affiliation(s)
- Regina E Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Lewis LC, Shafaat HS. Reversible Electron Transfer and Substrate Binding Support [NiFe 3S 4] Ferredoxin as a Protein-Based Model for [NiFe] Carbon Monoxide Dehydrogenase. Inorg Chem 2021; 60:13869-13875. [PMID: 34488341 DOI: 10.1021/acs.inorgchem.1c01323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nickel-iron carbon monoxide dehydrogenase (CODH) enzyme catalyzes the reversible and selective interconversion of carbon dioxide (CO2) to carbon monoxide (CO) with high rates and negligible overpotential. Despite decades of research, many questions remain about this complex metalloenzyme system. A simplified model enzyme could provide substantial insight into biological carbon cycling. Here, we demonstrate reversible electron transfer and binding of both CO and cyanide, a substrate and an inhibitor of CODH, respectively, in a Pyrococcus furiosus (Pf) ferredoxin (Fd) protein that has been reconstituted with a nickel-iron sulfide cluster ([NiFe3S4] Fd). The [NiFe3S4] cluster mimics the core of the native CODH active site and thus serves as a protein-based structural model of the CODH subsite. Notably, despite binding cyanide, no CO binding is observed for the physiological [Fe4S4] clusters in Pf Fd, providing chemical rationale underlying the evolution of a site-differentiated cluster for substrate conversion in native CODH. The demonstration of a substrate-binding metalloprotein model of CODH sets the stage for high-resolution spectroscopic and mechanistic studies correlating the subsite structure and function, ultimately guiding the design of anthropogenic catalysts that harness the advantages of CODH for effective CO2 reduction.
Collapse
Affiliation(s)
- Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Alcala-Torano R, Halloran N, Gwerder N, Sommer DJ, Ghirlanda G. Light-Driven CO 2 Reduction by Co-Cytochrome b 562. Front Mol Biosci 2021; 8:609654. [PMID: 33937320 PMCID: PMC8082397 DOI: 10.3389/fmolb.2021.609654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The current trend in atmospheric carbon dioxide concentrations is causing increasing concerns for its environmental impacts, and spurring the developments of sustainable methods to reduce CO2 to usable molecules. We report the light-driven CO2 reduction in water in mild conditions by artificial protein catalysts based on cytochrome b 562 and incorporating cobalt protoporphyrin IX as cofactor. Incorporation into the protein scaffolds enhances the intrinsic reactivity of the cobalt porphyrin toward proton reduction and CO generation. Mutations around the binding site modulate the activity of the enzyme, pointing to the possibility of further improving catalytic activity through rational design or directed evolution.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Zhang X, Cibian M, Call A, Yamauchi K, Sakai K. Photochemical CO2 Reduction Driven by Water-Soluble Copper(I) Photosensitizer with the Catalysis Accelerated by Multi-Electron Chargeable Cobalt Porphyrin. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xian Zhang
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mihaela Cibian
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Québec, Canada
| | - Arnau Call
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Center of Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Marguet SC, Stevenson MJ, Shafaat HS. Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation. J Phys Chem B 2019; 123:9792-9800. [DOI: 10.1021/acs.jpcb.9b08048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sean C. Marguet
- The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Michael J. Stevenson
- The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Call A, Cibian M, Yamamoto K, Nakazono T, Yamauchi K, Sakai K. Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04975] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Arnau Call
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Mihaela Cibian
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Keiya Yamamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Takashi Nakazono
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
- Center of Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
15
|
Burton R, Can M, Esckilsen D, Wiley S, Ragsdale SW. Production and properties of enzymes that activate and produce carbon monoxide. Methods Enzymol 2018; 613:297-324. [PMID: 30509471 PMCID: PMC6309614 DOI: 10.1016/bs.mie.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chapter focuses on the methods involved in producing and characterizing two key nickel-iron-sulfur enzymes in the Wood-Ljungdahl pathway (WLP) of anaerobic conversion of carbon dioxide fixation into acetyl-CoA: carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS). The WLP is used for biosynthesis of cell material and energy conservation by anaerobic bacteria and archaea, and it is central to several industrial biotechnology processes aimed at using syngas and waste gases for the production of fuels and chemicals. The pathway can run in reverse to allow organisms, e. g., methanogens and sulfate reducers, to grow on acetate. The CODH and ACS intertwine to form a tenacious CODH/ACS complex that converts CO2, a methyl group, and coenzyme A into acetyl-CoA. CODH also behaves as a modular unit that can function as an independent homodimer. Besides coupling to ACS, CODH can interact with hydrogenases to couple CO oxidation to H2 formation. These enzymes have been purified and characterized from several microbes.
Collapse
Affiliation(s)
- Rodney Burton
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Daniel Esckilsen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Seth Wiley
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Sok N, Bernhard C, Désogère P, Goze C, Rousselin Y, Boschetti F, Baglin I, Denat F. Efficient Synthesis of Multifunctional Chelating Agents Based on Tetraazacycloalkanes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicolas Sok
- AgroSup Dijon; PAM UMR A 02.102; Univ. Bourgogne Franche-Comté; 21000 Dijon France
| | - Claire Bernhard
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Pauline Désogère
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | | | - Isabelle Baglin
- Faculté de santé Département Pharmacie; Pharmacochimie; 28 rue Roger Amsler 49045 Angers Cedex France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| |
Collapse
|
17
|
Behnke SL, Manesis AC, Shafaat HS. Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Trans 2018; 47:15206-15216. [DOI: 10.1039/c8dt02873g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization of a NiIII species during reductive catalysis by [Ni(cyclam)]2+ implicates an ECCE mechanism for hydrogen production in aqueous solution.
Collapse
Affiliation(s)
- Shelby L. Behnke
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | | | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
- Ohio State Biochemistry Program
| |
Collapse
|