1
|
Xing Q, Xu X, Li H, Cui Z, Chu B, Xie N, Wang Z, Bai P, Guo X, Lyu J. Fabrication Methods of Continuous Pure Metal-Organic Framework Membranes and Films: A Review. Molecules 2024; 29:3885. [PMID: 39202964 PMCID: PMC11356928 DOI: 10.3390/molecules29163885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) have drawn intensive attention as a class of highly porous, crystalline materials with significant potential in various applications due to their tunable porosity, large internal surface areas, and high crystallinity. This paper comprehensively reviews the fabrication methods of pure MOF membranes and films, including in situ solvothermal synthesis, secondary growth, electrochemical deposition, counter diffusion growth, liquid phase epitaxy and solvent-free synthesis in the category of different MOF families with specific metal species, including Zn-based, Cu-based, Zr-based, Al-based, Ni-based, and Ti-based MOFs.
Collapse
Affiliation(s)
- Qinglei Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xiangyou Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Haoqian Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Zheng Cui
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Binrui Chu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Nihao Xie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Ziying Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Bai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghai Guo
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiafei Lyu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Zhou Z, Wang W, Shao R, Liu S, Liu S, Zhou X, Wu X, Jiang W, Xu Z. Targeted Elimination of Surface Defects in Carbon Fibers: Formation of a Hybrid Structure Combining Rigidity with Flexibility from Sonochemical-Induced Directional Growth of Nano-ZIF-8 and Subsequent Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015157 DOI: 10.1021/acs.langmuir.3c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Currently, the mechanical performance of carbon fibers (CFs) has yet to fully realize its theoretical potential. This is predominantly attributed to the significant constraints posed by surface defects, greatly impeding the widespread application of carbon fibers. In order to address this issue, we employed a sonochemical-induced approach in this study to achieve in situ growth of nanoscale zeolitic imidazolate framework-8 (ZIF-8) at the surface defects of carbon fibers. After high-temperature treatment, the structure of ZIF-8 decomposed into ZnO and inorganic carbon, reinforcing the carbon fiber structure from both flexible and rigid aspects. Our research indicates that when the temperature reaches 500 °C, a substantial portion of ZIF-8 undergoes thermal decomposition, giving rise to zinc oxide and inorganic carbon. The flexible inorganic carbon and rigid ZnO form a meshlike structure, which welds to the surface defects of carbon fibers, resulting in strong interactions and contributing to the delay of fiber fracture. Compared to unmodified carbon fibers, the mechanical performance increased by approximately 15.86%. Based on the aforementioned analysis, this method can be considered a direct and effective approach for reinforcing carbon fiber structures, presenting a novel approach for the precise elimination of surface defects on carbon fibers.
Collapse
Affiliation(s)
- Zhidong Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ruiqi Shao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shengkai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Siqi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinke Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xianyan Wu
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Changzhou 226007, Jiangsu, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Yang S, Zhen C, Li F, Fu P, Li M, Lu Y, Sheng Z. Clay-Coated Meshes with Superhydrophilicity and Underwater Superoleophobicity for Highly Efficient Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4396. [PMID: 37374579 DOI: 10.3390/ma16124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
A novel clay-coated mesh was fabricated via a simple brush-coating method without the use of special equipment, chemical reagents, and complex chemical reactions and operation processes. Possessing superhydrophilicity and underwater superoleophobicity, the clay-coated mesh can be used for efficiently separating various light oil/water mixtures. The clay-coated mesh also exhibits excellent reusability, maintaining a high separation efficiency of 99.4% after 30 repeated separations of the kerosene/water mixture.
Collapse
Affiliation(s)
- Shaolin Yang
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China
| | - Cheng Zhen
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China
| | - Fangfang Li
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China
| | - Panpan Fu
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China
| | - Maohui Li
- School of Materials Science and Engineering, National and Local Joint Engineering Research Center of Advanced Carbon-Based Ceramics Preparation Technology, North Minzu University, Yinchuan 750021, China
| | - Youjun Lu
- School of Materials Science and Engineering, National and Local Joint Engineering Research Center of Advanced Carbon-Based Ceramics Preparation Technology, North Minzu University, Yinchuan 750021, China
| | - Zhilin Sheng
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
4
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Liu Y, Wu C, Zhang Y, Zhao Q, Zhang B. Smart Hierarchical Zeolitic Imidazolate Framework-Coated Stainless Steel Meshes with Switchable Wettability for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8374-8381. [PMID: 35771126 DOI: 10.1021/acs.langmuir.2c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective filtration based on superwetting materials has brought about widespread attention in the field of oil/water separation. In this study, a ZIF-L@8-coated stainless steel mesh (ZIF-L@8-coated SSM) was prepared via in situ growth of two-dimensional leaf-shaped ZIF-L nanosheets on SSM, followed by heterogeneous epitaxial growth of ZIF-8 on a ZIF-L coating. The synthesized ZIF-L@8-coated SSM with a hierarchical micro/nanoscale structure exhibited outstanding switchable wettability between underwater superoleophobicity and underoil superhydrophobicity upon respective prewetting using water and oil without additional external stimuli. It possessed excellent separation performances and stabilities with respect to various types of oil/water mixtures. The switchable wettability mechanism was analyzed and elucidated in detail. The synthesized ZIF-L@8-coated SSM with switchable wettability in this study would have great potential in on-demand oil/water separation.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Chao Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Yao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
6
|
Zhang G, Liu Y, Chen C, Long L, He J, Tian D, Luo L, Yang G, Zhang X, Zhang Y. MOF-based cotton fabrics with switchable superwettability for oil–water separation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Liu Q, Yan J, Zhang T, Hu J, Bao Y, Wu L, Yu D, Li J. Multiphase media superwettability regulated by coexisting prewetting phase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Facile and scalable surface functionalization approach with small silane molecules for oil/water separation and demulsification of surfactant/asphaltenes-stabilized emulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Song Q, Zhu J, Niu X, Wang J, Dong G, Shan M, Zhang B, Matsuyama H, Zhang Y. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119920] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Ultrahigh throughput and efficient separation of oil/water mixtures using superhydrophilic multi-scale CuBTC-coated meshes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ma C, Liu H, Qiu J, Zhang X. Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
You H, Shangkum GY, Chammingkwan P, Taniike T. Surface wettability switching of a zeolitic imidazolate framework‐deposited membrane for selective efficient oil/water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Izevbekhai OU, Gitari WM, Tavengwa NT, Ayinde WB, Mudzielwana R. Response Surface Optimization of Oil Removal Using Synthesized Polypyrrole-Silica Polymer Composite. Molecules 2020; 25:molecules25204628. [PMID: 33050672 PMCID: PMC7587195 DOI: 10.3390/molecules25204628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
The severity of oil pollution, brought about by improper management, increases daily with an increase in the exploration and usage of oil, especially with an increase in industrialization. Conventional oil treatment methods are either expensive or time consuming, hence the need for new technologies. The aim of this research is to synthesize polypyrrole-modified silica for the treatment of oily wastewater. Pyrrole was copolymerized with silica in the presence of ferric chloride hexahydrate by adding 23 mL of 117.4 g/dm3 ferric chloride hexahydrate drop wise to a silica-pyrrole mixture (1:2.3). The mixture was stirred for 24 h, filtered and dried at 60 °C for 24 h. The composite was then characterized using FTIR and SEM/EDX. A central composite model was developed in design expert software to describe the efficiency of oil removal using the polypyrrole-modified silica under the influence of initial oil concentration, adsorbent dosage and contact time. The synthesized adsorbent had FTIR bands at 3000–3500 cm−1 (due to the N-H), 1034 cm−1 (attributed to the Si-O of silica), 1607 cm−1 and 1615 cm−1 (due to the stretching vibration of C=C of pyrrole ring). The adsorption capacity values predicted by the central composite model were in good agreement with the actual experimental values, indicating that the model can be used to optimize the removal of oil from oily wastewater in the presence of polypyrrole-modified silica. The adsorbent showed excellent oil uptake when compared with similar materials. The optimum conditions for oil removal were 7091 mg/L oil concentration, 0.004 g adsorbent dosage and contact time of 16 h. Under these conditions, the percentage of oil adsorption was 99.3% and adsorption capacity was 8451 mg/g. As a result of the low optimum dosage and the lack of agitation, the material was found to be applicable in the remediation of field wastewater.
Collapse
Affiliation(s)
- Oisaemi Uduagele Izevbekhai
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (W.B.A.); (R.M.)
- Correspondence: (O.U.I.); (W.M.G.)
| | - Wilson Mugera Gitari
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (W.B.A.); (R.M.)
- Correspondence: (O.U.I.); (W.M.G.)
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa;
| | - Wasiu Babatunde Ayinde
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (W.B.A.); (R.M.)
| | - Rabelani Mudzielwana
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (W.B.A.); (R.M.)
| |
Collapse
|
15
|
Wang M, Zhang Z, Wang Y, Zhao X, Men X, Yang M. Ultrafast Fabrication of Metal-Organic Framework-Functionalized Superwetting Membrane for Multichannel Oil/Water Separation and Floating Oil Collection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25512-25520. [PMID: 32408734 DOI: 10.1021/acsami.0c08731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional methods for oil/water separation suffer from many tricky problems such as low efficiency, high energy consumption, and difficulties in recycling and reusing. To address these hurdles, we developed a metal-organic framework-coated superwetting membrane for multichannel oil/water separation and collection of floating oils. The dip-coating method adopted in this paper is extremely flexible in manipulation and can be completed within 1 h under a low temperature without any assistance of high pressure. Interestingly, the strategy of fabricating superwetting membrane mainly includes introducing vital interlayers of Cu(OH)2 nanowires, which not only construct the favorable hierarchical structures but also act as partly sacrificed templates for further growth of hydrophilic MOF nanowhiskers. In virtue of the high flexibility of the as-prepared mesh, this superwetting membrane can be applied for multichannel oil/water separation including gravity-driven oil/water separation, continuous oil/water separation, and floating oil collection. Moreover, the separation efficiency and flux of the superwetting membrane keep high and stable under multiple separation cycles. This study paves the way for a fast and facile preparation of a superwetting membrane with high applicability for multiple oil/water separation.
Collapse
Affiliation(s)
- Mengke Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhu Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, China
| | - Xuehu Men
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingming Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, China
| |
Collapse
|
16
|
Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Ali N, Bilal M, Khan A, Ali F, Iqbal HM. Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115902] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Yin Y, Zhu L, Guo T, Qiao X, Gan S, Chang X, Li X, Xia F, Xue Q. Microphone-like Cu-CAT-1 hierarchical structures with ultra-low oil adhesion for highly efficient oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Song P, Lu Q. Porous clusters of metal-organic framework coated stainless steel mesh for highly efficient oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Responsive interfaces are interfaces that show a defined and reversible change in physical properties in response to external stimuli. Typically, responsive interfaces result from the immobilization of responsive molecular components at the interface that translate a nanoscale signal into a macroscopic effect. Responsive interfaces can also be obtained if the topology of the interface can be reversibly changed using an external stimulus. As the surface of any material is its connection to the environment, responsive interfaces provide opportunities for interactive materials which are not only able to change properties upon demand, but also sense their environment and act autonomously. The application of responsive molecular components at interfaces, however, requires chemical and physical compatibility with the material surface of interest, posing a challenge not least in the retention of the responsive functionality. The state of the art in "active" interfaces which display responsive wettability, permeability, or adhesion is discussed, with a particular emphasis on microscale and nanoscale patterning since patterned interfaces can give rise to unique material properties. Finally, perspectives in the development of responsive interfaces, as well as promising approaches for bypassing the most prominent challenges are discussed.
Collapse
Affiliation(s)
- Christoph Buten
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
21
|
Zhan Y, He S, Hu J, Zhao S, Zeng G, Zhou M, Zhang G, Sengupta A. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F 4@rGO composites for efficient and multitasking oil/water separation applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121752. [PMID: 31796368 DOI: 10.1016/j.jhazmat.2019.121752] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/15/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Super-wetting MOFs@graphene hybrid has shown promising application for oil/water separation, due to high porosity, low density, and controllable wettability, however, achieving excellent stability and recyclability are found to be still challenging. In this study, sandwich-like UIO-66-F4@rGO hybrid was synthesized by immobilization of UIO-66-F4 nanoparticles on rGO matrix, which featured the unique micro/nano hierarchy with hydrophobic characteristics. In order to realize the oil/water separation, as-prepared sandwich-like UIO-66-F4@rGO hybrid was applied as a potential candidate for constructing robust super-hydrophobic/super-oleophilic interfaces by using filter paper (FP) and melamine sponge (MS) as substrates. Typically, the surface modification of substrates can be easily achieved by simple dip-coating method, and interfacial adhesion between substrates and UIO-66-F4@rGO was enhanced by cross-linking of hydroxyl-fluoropolysiloxane (FPSO). Consequently, the super-hydrophobic/oleophilic UIO-66-F4@rGO/FP exhibited high contact angle of 169.3 ± 0.6° and was capable of separating various water-in-oil emulsions effectively. The flux and separation efficiency were 990.45 ± 36.28 Lm-2 h-1 and 99.73 ± 0.19 % driven by gravity, respectively. The super-hydrophobic/super-oleophilic UIO-66-F4@rGO/MS possessed selective oil absorption with absorption capacity of 26∼61 g/g depending on the viscosity of oils and continuous cleaning of oil spill. Furthermore, the UIO-66-F4@rGO composite could tolerate high/low temperature, corrosive solutions, and physical damage, displaying robust and stable super-hydrophobic/super-oleophilic interfaces for treating oily wastewater in harsh environments.
Collapse
Affiliation(s)
- Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Shuangjiang He
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Jiaxin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Shumei Zhao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Mi Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Guiyuan Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Arijit Sengupta
- Radiochemsitry Division, Bhabha Atomic Research Center, Mumbai, 400094, India
| |
Collapse
|
22
|
Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116273] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Gao J, Wei W, Yin Y, Liu M, Zheng C, Zhang Y, Deng P. Continuous ultrathin UiO-66-NH 2 coatings on a polymeric substrate synthesized by a layer-by-layer method: a kind of promising membrane for oil-water separation. NANOSCALE 2020; 12:6658-6663. [PMID: 32083268 DOI: 10.1039/c9nr10049k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we successfully controllably synthesize continuous nanothickness MOF coatings (NTMCs) by a layer-by-layer method on a polymeric substrate. The polymeric substrate was pretreated with high energy γ-irradiation to induce a high surface density of living reactive groups, which ensure the formation of continuous surface-integrated NTMCs. SEM, FT-IR spectroscopy and XPS were used to characterize NTMCs. The thickness and morphology were tuned by the LBL cycles, and NTMCs with a thickness of ∼44 nm were obtained. The chemical bonds between the NTMCs and polymeric substrate were confirmed by XPS and EDS. Moreover, the NTMCs exhibit good performance for oil-water separation. We believe that our work will promote the design and precise synthesis of high-performance MOF based membranes for multiple practical applications in future.
Collapse
Affiliation(s)
- Jian Gao
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Changchun 130022, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Wei S, Tang W, Hua K, Cui CX, Zhang Y, Zhang Y, Wang Z, Zhang S, Qu L. Fabrication of a superhydrophobic surface using a simple in situ growth method of HKUST-1/copper foam with hexadecanethiol modification. NEW J CHEM 2020. [DOI: 10.1039/d0nj00486c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A superhydrophobic HKUST-1/HDT/CF surface with excellent durability was fabricated by using an in situ growth method combined with surface HDT modification.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
- College of Food Science and Technonlogy
| | - Shaohua Wei
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Wenlong Tang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- NingXia University
- YinChuan
- China
| | - Kang Hua
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Cheng-xing Cui
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Yalei Zhang
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Yuping Zhang
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- NingXia University
- YinChuan
- China
| | - Shouren Zhang
- Huanghe Science and Technology College
- Zhengzhou
- China
| | - Lingbo Qu
- College of Food Science and Technonlogy
- Henan University of Technology
- Zhengzhou
- China
- School of Chemical Engineering and Energy
| |
Collapse
|
25
|
Gao X, Ma Q, Jin Z, Nian P, Wang Z. Switchable superlyophobic zeolitic imidazolate framework-8 film-coated stainless-steel meshes for selective oil–water emulsion separation with high flux. NEW J CHEM 2020. [DOI: 10.1039/d0nj02517h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A switchable superlyophobic ZIF-8 membrane can selectively remove oil droplets in oil-in-water emulsions via superoleophobicity and water droplets in water-in-oil emulsions via superhydrophobicity.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- Ningxia University
- Yinchuan 750021
| | - Qiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- Ningxia University
- Yinchuan 750021
| | - Zhengwei Jin
- Ningxia Coal Industry Co. Ltd
- China Energy Group
- Yinchuan 750411
- People's Republic of China
| | - Pei Nian
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- Ningxia University
- Yinchuan 750021
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
26
|
Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Ge X, Qin W, Zhang H, Wang G, Zhang Y, Yu C. A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil-water separation. NANOSCALE 2019; 11:12161-12168. [PMID: 31197303 DOI: 10.1039/c9nr02819f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Frequent oil spill accidents and ever-increasing oily wastewater have become serious global environmental problems. To enhance the oil-sorption capacity and simplify the oil-recovery process, the construction of various advanced oil sorbents and oil-collecting devices is of great technological importance. Herein, a three-dimensional (3D) porous carbon-based hybrid monolith has been successfully fabricated, in which cobalt based metal-organic framework (Co-MOF) nanosheets are firstly immobilized on a carbon foam (CF) skeleton (denoted as Co-MOFs/CF) via a facile vapor-phase hydrothermal (VPH) technique followed by carbonation treatment under a N2 atmosphere into Co@C/CF. The resulting Co@C/CF hybrid monolith exhibits an exceptional oil/water separation ability, including high sorption capacity (from 85 to 200 times its own weight toward various solvents and oils), easy collection and remarkable recyclability, as reflected by no obvious reduction in uptake capacity even after 20 cycles of repeated operation. More significantly, the oil-collecting device based on the proposed carbon-based hybrid monolith can rapidly, efficiently, and continuously collect oil from water surfaces, making it a promising candidate for oil-spill remediation.
Collapse
Affiliation(s)
- Xiao Ge
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenxiu Qin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| |
Collapse
|
28
|
HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Xu T, Shehzad MA, Yu D, Li Q, Wu B, Ren X, Ge L, Xu T. Highly Cation Permselective Metal-Organic Framework Membranes with Leaf-Like Morphology. CHEMSUSCHEM 2019; 12:2593-2597. [PMID: 31020804 DOI: 10.1002/cssc.201900706] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Highly cation permselective metal-organic framework (MOF) membranes are desirable for the extraction of valuable metal cations. However, fabrication of defect-free and stable permselective MOF membranes is technically challenging, owing to their arduous self-assembly and poor water resistance, respectively. A simple and readily scalable method has been developed for the controlled in situ smart growth of UiO-66-NH2 into leaf-like nanostructures with tunable density of the leaves and the surface layer thickness. The self-assembly approach reproducibly fabricates seamless, ultrathin (<500 nm) UiO-66-NH2 membranes at the surface of anodic aluminum oxide. The membranes contain nanosized interstices among the MOF leaves, which enable maximum admission of ions within the membrane, and angstrom-sized inherent pores in every single UiO-66-NH2 crystal, which efficiently regulate the cation permselectivity. Consequently, the highest ever reported cation separations (Na+ /Mg2+ >200 and Li+ /Mg2+ >60) and excellent membrane stability during five sequential electrodialysis cycles are achieved. These characteristics position the fabricated MOF membranes as potential candidates for efficient extraction of pure lithium and sodium ions from salt lakes and seawater, respectively.
Collapse
Affiliation(s)
- Tingting Xu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| | - Muhammad A Shehzad
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| | - Dongbo Yu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| | - Qiuhua Li
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| | - Bin Wu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| | - Xuemei Ren
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230026, China
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230088, China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, School of Chemistry and Materials University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
30
|
Zhang X, Li H, Miao W, Shen Q, Wang J, Peng D, Liu J, Zhang Y. Vertically zeolitic imidazolate framework‐L coated mesh with dagger‐like structure for oil/water separation. AIChE J 2019. [DOI: 10.1002/aic.16596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuke Zhang
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| | - Hui Li
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
- Research Department of New Materials Zhengzhou Institute of Emerging Industrial Technology Zhengzhou China
| | - Weizhen Miao
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| | - Qin Shen
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| | - Jing Wang
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| | - Donglai Peng
- School of Material & Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Jindun Liu
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| | - Yatao Zhang
- School of Chemical Engineering and Energy Zhengzhou University Zhengzhou China
| |
Collapse
|
31
|
Ding L, Gao J, Chung TS. Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Yu M, Wang Q, Yang W, Xu Y, Zhang M, Deng Q, Liu G. Facile Fabrication of Magnetic, Durable and Superhydrophobic Cotton for Efficient Oil/Water Separation. Polymers (Basel) 2019; 11:E442. [PMID: 30960426 PMCID: PMC6473410 DOI: 10.3390/polym11030442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023] Open
Abstract
In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe₃O₄ magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.
Collapse
Affiliation(s)
- Mingguang Yu
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Qing Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenxin Yang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Yonghang Xu
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Qianjun Deng
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
33
|
Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W. Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Li Q, Deng W, Li C, Sun Q, Huang F, Zhao Y, Li S. High-Flux Oil/Water Separation with Interfacial Capillary Effect in Switchable Superwetting Cu(OH) 2@ZIF-8 Nanowire Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40265-40273. [PMID: 30398837 DOI: 10.1021/acsami.8b13983] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highly ordered architectures with roughness and porous surface are the key challenges toward developing smart superwetting membranes. We prepared switchable superwetting Cu(OH)2@ZIF-8 core/shell nanowire membranes for high-flux oil/water separation as well as simultaneous heavy-metal ions removal in one step. The well-defined Cu(OH)2@ZIF-8 core/shell nanowire grown on copper mesh with average length of ca. 15 μm and diameter of ca. 162 nm exhibits high water contact angle (CA) of ca. 153 ± 0.6°. After modified by ethanol, the membrane holds the reverse superwettability with oil (dichloromethane as an example) CA of ca. 155 ± 0.8° underwater. The separation efficiencies of the membranes are higher than that of 97.2% with a remarkable flux rate higher than 90 000 L m-2 h-1 for the immiscible oil/water mixture. And the removal efficiency for Cr3+ ions at 10 ppb can arrive at 99.2 wt % in the toluene-in-water emulsion. The high performances of the smart superwetting membranes can be attributed to the interfacial capillary effects of the hierarchical Cu(OH)2@ZIF-8 core/shell nanostructures. This work may provide a new insight into the design of smart superwetting surfaces for oil/water separation and target adsorption in one step.
Collapse
Affiliation(s)
- Qianqian Li
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Wenjie Deng
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Chuanhao Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Qingyun Sun
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Fangzhi Huang
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Yan Zhao
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Shikuo Li
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|