1
|
Zhang Y, Rong X, Lin C, Wang B, Wu M, Wu T, Zhang X, Cheng Y, Chen X, Pan X, Xu Z, Sun Y, Fang M. A novel fluorescent probe based on dicyanoisophorone derivatives for hypochlorite detection in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125077. [PMID: 39278128 DOI: 10.1016/j.saa.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study presents a long-wavelength fluorescent probe CNC for the detection of ClO- in vitro and in vivo. Upon interaction with ClO-, this probe exhibited a significant increase in fluorescence, with a significant Stokes shift (169 nm), lower detection limit (1.38 μM), high sensitivity and selectivity. Moreover, the probe demonstrated excellent cell permeability and minimal cytotoxicity, allowing for successful imaging of both endogenous and exogenous ClO- in living cells.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China.
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Changjie Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Meihui Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Tong Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Xingyu Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, China
| | - Xin Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Xingqi Pan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Zihan Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Yu Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Ye H, Liu S, Chen Z, Cheng L, Yi L. A highly selective and sensitive endoplasmic reticulum-targeted probe reveals HOCl- and cisplatin-induced H 2S biogenesis in live cells. J Mater Chem B 2023. [PMID: 37254586 DOI: 10.1039/d3tb00863k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) and reactive sulfur species (RSS) are involved in many physiological processes and act as collaborators with crosstalk. As an important member of gasotransmitters and RSS, hydrogen sulfide (H2S) carries out signaling functions at submicromolar levels because of its high reactivity. Mechanisms of dynamic regulation of ROS and H2S production are poorly understood, and the development of a highly selective and organelle-targeted chemical tool will advance the further understanding of H2S chemical biology and ROS/RSS crosstalk. Herein, we report a highly selective and sensitive, endoplasmic reticulum (ER)-targeted fluorescent probe (ER-BODIPY-NBD) for revealing cisplatin-induced H2S biogenesis for the first time. The probe demonstrates a 152-fold fluorescence enhancement at 520 nm after reaction with H2S to release a bright BODIPY product (quantum yield 0.36). The probe is highly selective toward H2S over biothiols, ER-targeted, and biocompatible. In addition, the probe was successfully employed to track H2S biogenesis in live cells via stimulation from exogenous hypochlorous acid and the drug cisplatin.
Collapse
Affiliation(s)
- Haishun Ye
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Shanshan Liu
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Ziyi Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Long Yi
- Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| |
Collapse
|
4
|
Zhang X, Zhang F, Yang B, Liu B. A dual-site fluorescent probe for discriminately detecting low and high concentration of hypochlorite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122823. [PMID: 37210853 DOI: 10.1016/j.saa.2023.122823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Hypochlorite (ClO-) is an important bioactive molecule of living system which plays essential roles in many physiological and pathological processes. There is no doubt that the biological roles of ClO- depend highly on the concentration of ClO-. Unfortunately, the relationship between the concentration of ClO- and the biological process is unclear. Toward this purpose, in this work we addressed a core challenge for developing a powerful fluorescence tool for monitoring a wide concentration change (0-14 eq.) of ClO- via two distinct detection manners. The probe displayed fluorescence variation (red to green) upon addition of ClO- (0-4 eq.) and the color of test medium changed from red to colorless witnessed by the naked eyes. Surprisingly, in the presence of higher concentration of ClO- (4-14 eq.), the probe displayed another fluorescent signal change from green to blue. After demonstrating the excellent sensing properties of the probe with ClO- in vitro, it was successfully used to imaging different concentration of ClO- in living cells. We expected that the probe could act as an exciting chemistry tool for imaging of ClO- concentration-dependent oxidative stress event in biological system.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Binsheng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Bin Liu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Li N, Jiang H, Chen L, Li Z, Han Q, Ning L, Chen Z, Zhao S, Liu X. Converting commonly-used paper into nano-engineered fluorescent biomass-based platform for rapid ClO - quantitative detection in living cells and water sources. CHEMOSPHERE 2023; 324:138227. [PMID: 36858120 DOI: 10.1016/j.chemosphere.2023.138227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Hypochlorous acid (HClO) and derivative ionic form (ClO-) are significant components of reactive oxygen species, and thus various diseases are correlatively related to the concentration of ClO-. Recently, paper-based indicators have been confirmed to be efficient strategy for sensing hazardous and noxious substances. However, most of these materials can only achieve qualitative detection of the substrates. Herein, an extremely simple manufacturing strategy was proposed to convert commonly-used paper into nano-engineered fluorescent biomass-based platform (CMJL-FP) integrated with on-demand self-assembled colorimetric and ratiometric fluorescence sensor (CMJL) for rapid ClO- quantitative detection in organisms or water sources using smartphones. The CMJL exhibited a highly selective and sensitive ratiometric response to ClO- at a low detection limit (LOD = 92.6 nM). The associating interactions between the fluorescence nano-particles and micro-nano fibers of CMJL-FP ensure good-stability during ClO- detection. It has been experimentally demonstrated that CMJL-FP allows one to realize the rapid quantitative detection of ClO- ions in living cells and large-scale water sources by using color recognition software as part of a simple smartphone. Therefore, integrating the proposed fluorescent paper with smartphones provides an effective, sustainable, cheap and conceptual strategy for quantitative detection of hazardous and noxious substances in organisms and environments.
Collapse
Affiliation(s)
- Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Lijuan Chen
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Zhijian Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Qingxin Han
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Lulu Ning
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zhenjuan Chen
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China.
| |
Collapse
|
6
|
Wang H, Zhang C, Jiang Z, Xu L, Liu Z. Fluorescent phenothiazine-fused boron complexes for ratiometric hypochlorite imaging. Dalton Trans 2023; 52:1393-1398. [PMID: 36637140 DOI: 10.1039/d2dt03824b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescent hypochlorite probes with ratiometric imaging ability are highly desirable for imaging hypochlorite in biological systems. However, it is still challenging to develop new scaffolds for these probes. In this study, we demonstrate that phenothiazine-fused boron complexes are promising scaffolds for the design of ratiometric fluorescent hypochlorite probes. The synthesized complexes based on the scaffold show ultrafast and ratiometric absorption/fluorescence changes for hypochlorite. We also developed an endoplasmic reticulum-targeting probe and demonstrated that it has excellent real-time imaging ability for both endogenous and exogenous hypochlorite in the endoplasmic reticulum of living cells.
Collapse
Affiliation(s)
- Hong Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. .,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Tu S, Tan M, Guo Y, Wu X, Li L, Li W, Pan W, Ke F. A big blue-shift phenanthroline fluorescent probe with for detecting hypochlorous acid in live cells. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Gu B, Liu M, Long J, Ye X, Xu Z, Shen Y. An AIE based fluorescent chemosensor for ratiometric detection of hypochlorous acid and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121290. [PMID: 35526440 DOI: 10.1016/j.saa.2022.121290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Detecting and imaging intracellular hypochlorous acid (HClO) is of great importance owning to its prominent role in numerous pathological and physiological processes. In this contribution, a novel AIE-based fluorescent chemosensor has been developed by employing a benzothiazole derivative. The synthesized probe displayed remarkable ratiometric fluorescent response to HClO with a large emission shift (139 nm), resulting in naked-eye fluorescence changes from red to blue. Under the optimal conditions, this probe was capable of quantitatively detecting HClO within 10 s, and possessed good sensitivity and high selectivity toward HClO over other biologically relevant species. Moreover, it has been successfully utilized to image the exogenous and endogenous HClO in living cells through dual channels, and conveniently detect hypochlorous acid solution on test strips with better accuracy, demonstrating its potential for monitoring HClO in biological and environment fields.
Collapse
Affiliation(s)
- Biao Gu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Mengqin Liu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Jiumei Long
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang 421008, PR China
| | - Xinrong Ye
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Zhifeng Xu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Youming Shen
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
9
|
Li L, Wang X, Huang J, Ma K, Tan X. A novel near-infrared fluorescent probe for rapid sensing of HClO in living cells and zebrafish. Front Chem 2022; 10:1009186. [PMID: 36212076 PMCID: PMC9532538 DOI: 10.3389/fchem.2022.1009186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are significant active species in living organisms, and their coordination maintains the function of organelles to resist the invasion of foreign substances. Hypochlorous acid (HClO) is not only an eventful signaling species but also a kind of ROS, which plays an irreplaceable role in the immune system. However, its abnormal levels can cause cell damage or even apoptosis, which in turn leads to the onset of a series of diseases such as inflammation, neurological diseases, and even cancer. Based on this, we designed a near-infrared fluorescent probe with a large Stokes shift for ultrafast response to HClO. Furthermore, the probe exhibits excellent sensitivity and selectivity toward HClO over other species. The probe was successfully applied to visualize endogenous and exogenous HClO in living cells and in zebrafish. This unique study is the key to providing a trustworthy tool for imaging based on the in vitro and in vivo imaging of endogenous HClO, which possesses great potential for the use in future studies of HClO-related biology and pathology.
Collapse
Affiliation(s)
- Liangliang Li
- Shenzhen Longhua District Central Hospital, Guangzhou, China
| | - Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinzhi Huang
- Shunde Women and Children’s Hospital of Guangdong Medical University, Foshan, Guangdong, China
- *Correspondence: Jinzhi Huang,
| | - Kaidong Ma
- Shenzhen Longhua District Central Hospital, Guangzhou, China
| | - Xiaoyu Tan
- Shenzhen Longgang District Maternal and Child Health Hospital, Guangzhou, China
| |
Collapse
|
10
|
Wang X, Zhang J, Cui Y, Wang H, Lu W, Xu L. A Ratiometric Fluorescence Nanoprobe for Ultrafast Imaging of Hypochlorite in Living Cells and Zebrafish. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ding G, Gai F, Gou Z, Zuo Y. A fluorescent probe based on POSS for facilitating the visualization of HClO and NO in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2035-2042. [PMID: 35548909 DOI: 10.1039/d2ay00482h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The main production area of HClO and NO is the mitochondria and has modulatory effects on multiple human diseases. Simultaneous detection of signaling molecules such as HClO and NO is an important approach for exploring the complex relationship between HClO and NO in mitochondria. However, most probes can detect only one species or are unable to complete the monitoring of HClO and NO in the NIR channel. There are only few reports on reasonable tools that can simultaneously monitor the presence of HClO and NO in the NIR channel. In this work, to solve this difficulty, a POSS-assisted NIR fluorescent probe with dual-response was rationally devised and developed. The probe Mito-Cy possessed high specificity and responsiveness to HClO and NO in spectral experiments. Notably, the probe exhibited excellent responsiveness and sensitivity to HClO and NO in living cells and the zebrafish model.
Collapse
Affiliation(s)
- Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
12
|
A Highly Selective Fluorescent Probe for Hypochlorous Acid in Living Cells Based on a Naphthalene Derivative. Int J Anal Chem 2022; 2022:7649230. [PMID: 35198026 PMCID: PMC8860552 DOI: 10.1155/2022/7649230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hypochlorous acid (HOCl) was crucial for maintaining the homeostasis in cells and plays vital roles in many physiological and pathological processes. In this work, a highly selective fluorescent probe for hypochlorous acid in living cells was constructed and prepared based on a naphthalene derivative. A naphthalene derivative was utilized as the fluorescent group, and N,N-dimethylthiocarbamate was applied as the selective recognition site for HOCl. Before adding HOCl, the fluorescent probe exhibited weak fluorescence. Upon adding HOCl, the fluorescent probe displayed remarkable fluorescence enhancement. The fluorescence intensity at 502 nm showed a linear response to the concentration of HOCl from 3.0 × 10−7 to 1.0 × 10−5 mol·L−1. The detection limit was estimated to be 1.5 × 10−7 mol·L−1 for HOCl. The fluorescent probe showed fast response and outstanding selectivity toward HOCl. It owned good biocompatibility and had also been successfully applied in the confocal imaging of exogenous and endogenous HOCl in living cells.
Collapse
|
13
|
Jia X, Wei C, Li Z, Liu L, Wang M, Zhang P, Li X. Selective Imaging of HClO in the Liver Tissue In Vivo Using a Near-infrared Hepatocyte-specific Fluorescent Probe. Chem Asian J 2021; 16:1967-1972. [PMID: 34036742 DOI: 10.1002/asia.202100476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Liver injury is typified by an inflammatory response. Hypochlorous acid (HClO), an important endogenous reactive oxygen species, is regarded as a biomarker associated with liver injury. Near-infrared (NIR) fluorescent probes with the advantage of deep tissue penetrating and low auto-fluorescence interference are more suitable for bioimaging in vivo. Thus, in this work, we designed and synthesized a novel NIR hepatocyte-specific fluorescent probe named NHF. The probe NHF showed fast response (<3 s), large spectral variation, and good selectivity to trace HClO in buffer solution. By employing N-acetylgalactosamine (GalNAc) as the targeting ligand, probe NHF can be actively delivered to the liver tissue of zebrafish and mice. It is important that probe NHF is the first NIR hepatocyte-specific fluorescent probe, which successfully visualized the up-regulation of endogenous HClO in the oxygen-glucose deprivation/reperfusion (OGD/R) model HepG2 cells and dynamically monitored APAP-induced endogenous HClO in the liver tissue of zebrafish and mice.
Collapse
Affiliation(s)
- Xu Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Zimeng Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Liyan Liu
- Medical Comprehensive Experimental Center, Hebei University, East Road Yuhua 342, Baoding, 071000, P. R. China
| | - Mei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Pingzhu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| |
Collapse
|
14
|
Cheng W, Xue X, Gan L, Jin P, Zhang B, Guo M, Si J, Du H, Chen H, Fang J. Individual and successive detection of H 2S and HClO in living cells and zebrafish by a dual-channel fluorescent probe with longer emission wavelength. Anal Chim Acta 2021; 1156:338362. [PMID: 33781461 DOI: 10.1016/j.aca.2021.338362] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive sulfur species (RSS) participate in many physiological activities and help maintaining the redox homeostasis in biological system. The complicated intrinsic connection between specific ROS/RSS needs to be further explored. Herein, a novel fluorescent probe (MB-NAP-N3) with longer emission wavelength has been rationally designed and synthesized based on the conjugation of the methylene blue moiety and the naphthalimide moiety for the detection of hypochlorous acid (HClO) and hydrogen sulfide (H2S). The dual-signal probe exhibits rapid turn-on fluorescence responses for individual and successive detection of H2S and HClO in green and red channels, respectively. Owning to its advantages such as fast response, good selectivity and high sensitivity, the probe was successfully applied to detect endogenous and exogenous HClO/H2S in living cells. Furthermore, the outstanding luminescence performance makes it suitable for the visualization of the in vivo interaction between the two analytes in zebrafish.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xuqi Xue
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peng Jin
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Menghuan Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430071, China.
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, And College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Gan Y, Yin G, Zhang X, Zhou L, Zhang Y, Li H, Yin P. Turn-on fluorescent probe for sensing exogenous and endogenous hypochlorous acid in living cells, zebrafishes and mice. Talanta 2021; 225:122030. [DOI: 10.1016/j.talanta.2020.122030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
|
16
|
Zhang J, Yang L, Wang Y, Cao T, Sun Z, Xu J, Liu Y, Chen G. Ebselen-Agents for Sensing, Imaging and Labeling: Facile and Full-Featured Application in Biochemical Analysis. ACS APPLIED BIO MATERIALS 2021; 4:2217-2230. [PMID: 35014346 DOI: 10.1021/acsabm.0c01561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenyl-1,2-benzoselenazol-3(2H)-one (ebselen) is a classical mimic of glutathione peroxidase (GPx). Thioredoxin interaction endows ebselen attractive biological functions, such as antioxidation and anti-infection, as well as versatile therapeutic usage. Accordingly, application of ebselen analogues in biosensing, chemical labeling, imaging analysis, disease pathology, drug development, clinical treatment, etc. have been widely developed, in which mercaptans, reactive oxygen species, reactive sulfur species, peptides, and proteins were involved. Herein, focusing on the application of ebselen-agents in biochemistry, we have made a systematic summary and comprehensive review. First, we summarized both the classical and the innovative methods for preparing ebselen-agents to present the synthetic strategies. Then we discussed the full functional applicability of ebselen analogues in three fields of biochemical analysis including the fluorescence sensing and bioimaging, derivatization for high throughput fluorescence analysis, and the labeling gents for proteomics. Finally, we discussed the current challenges and perspectives for ebselen-agents as analytical tools in biological research. By presenting the multifunctional applicability of ebselen, we hope this review could appeal researchers to design the ebselen-related biomaterials for biochemical analysis.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Lei Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Yuxin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Tianyi Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Jie Xu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuxia Liu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
17
|
He X, Dai L, Wen H, Xu C, Xu W, Ye L, Sun X, Song W, Shen J. Reaction-based chemosensor as dual-channel indicator for visualizing and bioimaging of exogenous hypochlorite concentrations in living cells, Pseudomonas aeruginosa, and zebrafish. Anal Chim Acta 2021; 1157:338391. [PMID: 33832595 DOI: 10.1016/j.aca.2021.338391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/12/2023]
Abstract
Tracking and quantifying hypochlorite (ClO-) in biological systems and environments remain challenging tasks, and many efforts have been made to improve ClO- recognition performance by modifying the sensor structure. In this study, a pre-designed coumarin/furanohydrazide-based sensor (CMFH) with the coumarin moiety as the building block (fluorogen) was rationally prepared as a ratiometric and colorimetric chemosensor for ClO- recognition. As expected, CMFH demonstrated excellent sensitivity and selectivity for ClO- detection. The fluorescence signal ratio (F466/F556) showed strong ClO- dependency, and the sensor exhibited ultrafast detection (within 60 s) and a low detection limit of 563 nM. Due to its low cytotoxicity and good tissue permeability, CMFH was demonstrated as a dual-channel sensor for ClO- bioimaging and visualization in cells, zebrafish, and even bacteria. Furthermore, CMFH-loaded paper strips were successfully applied to the colorimetric and fluorescent visualization of ClO-. The results demonstrate that CMFH has potential application value for tracking ClO- in various biosystems and environments.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lixiong Dai
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Han Wen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chuchu Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lisong Ye
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Song
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan, 410005, China.
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
18
|
Wang K, Xi D, Liu C, Chen Y, Gu H, Jiang L, Chen X, Wang F. A ratiometric benzothiazole-based fluorescence probe for selectively recognizing HClO and its practical applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta 2020; 215:120901. [DOI: 10.1016/j.talanta.2020.120901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
21
|
Li Z, Huang S, He Y, Duan Q, Zheng G, Jiang Y, Cai L, Jia Y, Zhang H, Ho D. AND logic gate based fluorescence probe for simultaneous detection of peroxynitrite and hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118073. [PMID: 31978691 DOI: 10.1016/j.saa.2020.118073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Hypochlorous acid (HOCl) and peroxynitrite (ONOO-) are two of the most important reactive species and associated with various diseases in various physiological and pathological processes. Nonetheless, many of their roles are still vague due to the shortage of methods for simultaneously detecting HOCl and ONOO-. Herein, three simple yet useful fluorogenic probes, LG-1, LG-2 and LG-3, have been fabricated with facile synthesis route and used to monitor the coexistence of HOCl and ONOO- as AND-based logic gate fluorescent probe firstly. LG-1 and LG-2, which consists of 1,3-oxathiolane group and boronate group respectively, were designed to verify the capacity of monitoring HOCl and ONOO- without interference from each other. The result showed that these two groups are perfect reaction sites of detecting HOCl and ONOO- respectively via specific analyte-induced reactions. Hence, LG-3, which is attached by these two groups to suppress the fluorophore core, can response to HOCl and ONOO- simultaneously without mutual interference and generate the significant time-dependent fluorescence enhancement. By investigating the absorption and fluorescence properties of LG-3 towards HOCl and ONOO- individually and collectively, the result confirmed clearly that LG-3 has the capacity of monitoring the coexistence of HOCl and ONOO-, which could act as a two-input AND-based logic gate fluorescent probe.
Collapse
Affiliation(s)
- Zejun Li
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shumei Huang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yong He
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qinya Duan
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yin Jiang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lili Cai
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yongguang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Chen W, Li G, Chen C, Sheng J, Yang L. Aggregation-enhanced emission enables phenothiazine coumarin as a robust ratiometric fluorescent for rapid and selective detection of HClO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117724. [PMID: 31753645 DOI: 10.1016/j.saa.2019.117724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/27/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
By taking advantage of phenothiazine moiety as an electron-donating group, a novel donor-acceptor (D-A) type coumarin dye, PTZ-Et, was developed. The introduction of phenothiazine moiety not only caused emission red-shifting and Stokes shift enlarging, but also endowed PTZ-Et with significant aggregation-enhanced emission (AEE) features, thereby enabled PTZ-Et as a robust ratiometric fluorescent probe for HClO detection. Upon oxidation of the sulfur atom on phenothiazine into sulfoxide, PTZ-Et displayed remarkable ratiometric fluorescence response (over 150 folds variations of F534/F626) toward HClO with rapid response time (<30 s) and ultra-sensitivity (LOD = 15 nM). Additionally, the corresponding sensing mechanism of PTZ-Et for HClO was fully elucidated through the successful purification and well characterization (1H NMR, 13C NMR, HRMS, and single crystal data) of the corresponding reaction product between PTZ-Et and HClO. Significantly, PTZ-Et was capable of monitoring both exogenous and endogenous HClO in living RAW 264.7 cells by ratiometric fluorescence imaging.
Collapse
Affiliation(s)
- Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China.
| | - Guofang Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China
| | - Chunfei Chen
- Guangxi Zhuang Autonomous Region Environmental Monitoring Centre, Nanning, 530028, PR China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, PR China.
| |
Collapse
|
23
|
Wang X, Tao Y, Zhang J, Chen M, Wang N, Ji X, Zhao W. Selective Detection and Visualization of Exogenous/endogenous Hypochlorous Acid in Living Cells using a BODIPY-based Red-emitting Fluorescent Probe. Chem Asian J 2020; 15:770-774. [PMID: 32017366 DOI: 10.1002/asia.201901709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/19/2020] [Indexed: 12/30/2022]
Abstract
Herein, a red-emitting fluorescent probe DM-BDP-OCl containing a para-DMTC benzyl pyridinium moiety at the meso position of BODIPY as self-immolative portion for the detection of HOCl was designed and synthesized. DM-BDP-OCl exhibited excellent specificity and a fast response for HOCl beyond other ROS/RNS. It was used for the accurately measurable detection of HOCl with a linear range from 0 μM to 50 μM, and the detection limit for HOCl reached 60 nM. Moreover, the probe could directly monitor fluctuations of exogenous and endogenous HOCl in living HeLa and RAW 264.7 cells. This work provided a powerful and convenient imaging tool for probing pathological and physiological actions of HOCl.
Collapse
Affiliation(s)
- Xianhui Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Miao Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Ji
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.,School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
24
|
Han X, Ma Y, Chen Y, Wang X, Wang Z. Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model. Anal Chem 2020; 92:2830-2838. [PMID: 31913021 DOI: 10.1021/acs.analchem.9b05347] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH3O-TPE-Py+-N+ (COTN) and OH-TPE-Py+-N+ (HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py+-N+ group; the reaction products are CH3O-TPE-CHO (COT) and OH-TPE-CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels.
Collapse
Affiliation(s)
- Xiaomin Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , No.19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| |
Collapse
|
25
|
Yue X, Wang J, Han J, Wang B, Song X. A dual-ratiometric fluorescent probe for individual and continuous detection of H2S and HClO in living cells. Chem Commun (Camb) 2020; 56:2849-2852. [DOI: 10.1039/c9cc10028h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A dual-ratiometric fluorescent probe, Han-HClO-H2S, was developed for the individual and continuous detection of H2S and HClO with high sensitivity and good selectivity, and had been applied to detect intracellular H2S and/or HClO in living cells.
Collapse
Affiliation(s)
- Xiuxiu Yue
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Jinliang Han
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
| |
Collapse
|
26
|
He X, Xu C, Xiong W, Qian Y, Fan J, Ding F, Deng H, Chen H, Shen J. The ICT-based fluorescence and colorimetric dual sensing of endogenous hypochlorite in living cells, bacteria, and zebrafish. Analyst 2020; 145:29-33. [DOI: 10.1039/c9an02226k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work demonstrates a novel chemosensor, SPTPA, that exhibits fluorescence and colorimetric dual sensing of hypochlorite with an ICT ON strategy.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Chuchu Xu
- School of Stomatology
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Xiong
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Yuna Qian
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
| | - Jinyi Fan
- School of Stomatology
- Wenzhou Medical University
- Wenzhou
- China
| | - Feng Ding
- Department of Microbiology & Immunology
- School of Basic Medical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
| | - Hui Deng
- School of Stomatology
- Wenzhou Medical University
- Wenzhou
- China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules
- College of Food and Drug
- Luoyang Normal University
- Luoyang
- China
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
27
|
Li Y, Li H, Di G. Ratiometric fluorescent probe with aggregation-induced emission features for monitoring HClO in living cells and zebra fish. NEW J CHEM 2020. [DOI: 10.1039/c9nj06458c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we present a ratiometric fluorescent probe, PTZ-HClO, with unique optical performance and aggregation-induced emission features that can simultaneously detect HClO.
Collapse
Affiliation(s)
- Yanfei Li
- College of Fisheries
- Engineering Lab of Henan Province for Aquatic Animal Disease Control
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation
- Henan Normal University
- Xinxiang
| | - Hui Li
- College of Fisheries
- Engineering Lab of Henan Province for Aquatic Animal Disease Control
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation
- Henan Normal University
- Xinxiang
| | - Guilan Di
- College of Fisheries
- Engineering Lab of Henan Province for Aquatic Animal Disease Control
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation
- Henan Normal University
- Xinxiang
| |
Collapse
|
28
|
Wang J, Cheng D, Zhu L, Wang P, Liu HW, Chen M, Yuan L, Zhang XB. Engineering dithiobenzoic acid lactone-decorated Si-rhodamine as a highly selective near-infrared HOCl fluorescent probe for imaging drug-induced acute nephrotoxicity. Chem Commun (Camb) 2019; 55:10916-10919. [PMID: 31441466 DOI: 10.1039/c9cc04736k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly selective lysosome-targeting NIR fluorescent probe (Lyso-SiR-2S) for HOCl was constructed based on Si-rhodamine B spirodithiolactone. This probe was very effectively employed to sense HOCl produced in various living cells and to visualize fluctuations of endogenous HOCl resulting from GEN-induced acute kidney injury in vivo for the first time.
Collapse
Affiliation(s)
- Jinping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang J, Men Y, Niu L, Luo Y, Zhang J, Zhao W, Wang J. A Reaction-Based Fluorescent Probe for Imaging of Native Hypochlorous Acid. Chem Asian J 2019; 14:3893-3897. [PMID: 31531948 DOI: 10.1002/asia.201901041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Hypochlorous acid (HOCl), one of the reactive oxygen species (ROS), is highly reactive and short-lived. It is a challenge to dynamic monitor HOCl activity in living systems. Hence, we synthesized a new fluoresce nt probe RF1 based on protection of the hydroxyl group by N,N-dimethylthiocarbamate recognition group, which reached a low fluorescence background signal and highly sensitive property. On account of the electrophilic addition of Cl+ to the sulfide of thiocarbamate moiety, probe RF1 was converted to resorufin and triggered emitting bright. RF1 showed not only the highly sensitive and selective response to HOCl in vitro, but also can be applied in environmental water samples and detected HOCl by test strips. Besides, the ability of RF1 monitoring HOCl in HeLa cells by exogenous simulation and tracing native HOCl in macrophages cells were also explored.
Collapse
Affiliation(s)
- Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Yuhui Men
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Yang Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
30
|
Liu C, Li Z, Yu C, Chen Y, Liu D, Zhuang Z, Jia P, Zhu H, Zhang X, Yu Y, Zhu B, Sheng W. Development of a Concise Rhodamine-Formylhydrazine Type Fluorescent Probe for Highly Specific and Ultrasensitive Tracing of Basal HOCl in Live Cells and Zebrafish. ACS Sens 2019; 4:2156-2163. [PMID: 31293155 DOI: 10.1021/acssensors.9b01001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypochlorous acid (HOCl) has received special attention by virtue of its pivotal antimicrobial nature, and the appropriate amount of HOCl is beneficial to innate immunity of host to cope with microbial invasion. However, the uncontrollable accumulation of HOCl is implicated in many human diseases and even cancers. Thus, to determine its deeper biological functions, it is significantly important to specifically monitor intracellular HOCl in biosystems. Herein, we rationally designed a simple fluorescent probe FH-HA on the basis of the formylhydrazine recognition receptor and rhodamine B fluorophore. It is worth noting that the formylhydrazine moiety for the first time is adopted as the recognition receptor for specifically recognizing HOCl. Additionally, probe FH-HA also exhibited excellent performance in many areas including satisfactory water-solubility, high specificity, and excellent sensitivity. Notably, probe FH-HA could quickly respond to HOCl (within 3 s), which facilitates the tracing of transient HOCl. More importantly, probe FH-HA was capable of specifically tracing the fluctuations of endogenous HOCl in living cells and zebrafish, and it could monitor basal HOCl in cancer cells to distinguish cancer cells from normal ones.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Chen Yu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Yanan Chen
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Dongmei Liu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Zihan Zhuang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Pan Jia
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
31
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Sun J, Li X, Cao J, Sun Q, Zhang Y, Wang X, Wu T, Hu X, Feng F. Mitochondria Targeting Fluorescent Probes Based on through Bond‐Energy Transfer for Mutually Imaging Signaling Molecules H
2
S and H
2
O
2. Chemistry 2019; 25:9164-9169. [DOI: 10.1002/chem.201900959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Jian Sun
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xiao Li
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Qi Sun
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Jiangxi Nanchang 330013 P. R. China
| | - Yajie Zhang
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xuewei Wang
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Tiantian Wu
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xiantao Hu
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & EngineeringNanjing University Jiangsu Nanjing 210023 P. R. China
| |
Collapse
|
33
|
Shi D, Chen S, Dong B, Zhang Y, Sheng C, James TD, Guo Y. Evaluation of HOCl-generating anticancer agents by an ultrasensitive dual-mode fluorescent probe. Chem Sci 2019; 10:3715-3722. [PMID: 31015915 PMCID: PMC6457194 DOI: 10.1039/c9sc00180h] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a crucial role in the process of pathogenic oxidative stress. Some powerful anticancer agents, such as elesclomol, specifically induce cancer cell apoptosis by increasing HOCl levels. However, sensitive tools to monitor subtle changes of biological HOCl in vivo are limited. To achieve this, we herein present rationally designed probes C1-C7 through introducing a bioorthogonal dimethylthiocarbamate receptor. All the probes were shown to sensitively and rapidly detect HOCl in the nanomolar/biologically relevant concentration range with fluorescence turn-on observed in their respective optical regions, resulting in a blue-to-red "fluorescence rainbow" and providing a broad selection of colors for imaging HOCl in vivo. Remarkably, probe C7 exhibited both a turn-on signal at biologically relevant concentrations (LOD1 = 18 nM) and a ratiometric response at the high risk pathogenic concentrations (LOD2 = 0.47 μM), which gives a higher reliability compared to a single signal and avoids cross-talk caused by the combined use of several probes. C7 was used to monitor the oxidative stress process induced by elesclomol in live cancer cells, and using this probe it was further discovered that an evodiamine derivative was capable of generating cancer-cell HOCl.
Collapse
Affiliation(s)
- Donglei Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , National Demonstration Center for Experimental Chemistry Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China .
| | - Shuqiang Chen
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics , College of Electronic Science and Engineering , Jilin University , Changchun 130012 , China
| | - Yanhui Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , National Demonstration Center for Experimental Chemistry Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China .
| | - Chunquan Sheng
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , UK
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , National Demonstration Center for Experimental Chemistry Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China .
| |
Collapse
|
34
|
Jia P, Zhuang Z, Liu C, Wang Z, Duan Q, Li Z, Zhu H, Du B, Zhu B, Sheng W, Kang B. A highly specific and ultrasensitive p-aminophenylether-based fluorescent probe for imaging native HOCl in live cells and zebrafish. Anal Chim Acta 2019; 1052:131-136. [DOI: 10.1016/j.aca.2018.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022]
|
35
|
Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Release of Amino‐ or Carboxy‐Containing Compounds Triggered by HOCl: Application for Imaging and Drug Design. Angew Chem Int Ed Engl 2019; 58:4547-4551. [DOI: 10.1002/anie.201813648] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Peng Wei
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingyan Liu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ying Wen
- Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Guilong Zhao
- Division of Drug Discovery at Hangzhou Dingzhi Pharmaceuticals, Inc. 1500 Wenyixi Road Hangzhou 311121 China
| | - Fengfeng Xue
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wei Yuan
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ruohan Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaping Zhong
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Mengfan Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Yi
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
36
|
Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Release of Amino‐ or Carboxy‐Containing Compounds Triggered by HOCl: Application for Imaging and Drug Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wei
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingyan Liu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ying Wen
- Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Guilong Zhao
- Division of Drug Discovery at Hangzhou Dingzhi Pharmaceuticals, Inc. 1500 Wenyixi Road Hangzhou 311121 China
| | - Fengfeng Xue
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wei Yuan
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ruohan Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaping Zhong
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Mengfan Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Yi
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
37
|
Duan Q, Jia P, Zhuang Z, Liu C, Zhang X, Wang Z, Sheng W, Li Z, Zhu H, Zhu B, Zhang X. Rational Design of a Hepatoma-Specific Fluorescent Probe for HOCl and Its Bioimaging Applications in Living HepG2 Cells. Anal Chem 2019; 91:2163-2168. [PMID: 30592205 DOI: 10.1021/acs.analchem.8b04726] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver cancer is a kind of high mortality cancer due to the difficulty of early diagnosis. And according to the reports, the concentration of reactive oxygen species (ROS) was higher in cancer cells than normal cells. Therefore, developing an effective fluorescent probe for hepatoma-selective imaging of hypochlorous acid (HOCl) which is one of the vital ROS is of great importance for understanding the role of HOCl in liver cancer pathogenesis. However, the cell-selective fluorescent probe still remains a difficult task among current reports. Herein, a galactose-appended naphthalimide (Gal-NPA) with p-aminophenylether as a new receptor and galactose moiety as hepatoma targeting unit was synthesized and employed to detect endogenous HOCl in living HepG2 cells. This probe was proved to possess good water solubility and could respond specifically to HOCl. In addition, probe Gal-NPA could completely react to HOCl within 3 s meanwhile accompanied by tremendous fluorescence enhancement. The quantitative linear range between fluorescence intensities and the HOCl concentrations was 0 to 1 μM (detection limit = 0.46 nM). More importantly, fluorescence confocal imaging experiments showed that probe Gal-NPA could discriminate hepatoma cells over other cancer cells and simultaneously trace endogenous HOCl levels in living HepG2 cells. And we thus anticipate that probe Gal-NPA has the potential application for revealing the functions of HOCl in hepatoma cells.
Collapse
Affiliation(s)
- Qingxia Duan
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Pan Jia
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Zihan Zhuang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Caiyun Liu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Xue Zhang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Zuokai Wang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Wenlong Sheng
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , 250103 , China
| | - Zilu Li
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Hanchuang Zhu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Baocun Zhu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
38
|
Duan Q, Zheng G, Li Z, Cheng K, Zhang J, Yang L, Jiang Y, Zhang H, He J, Sun H. An ultra-sensitive ratiometric fluorescent probe for hypochlorous acid detection by the synergistic effect of AIE and TBET and its application of detecting exogenous/endogenous HOCl in living cells. J Mater Chem B 2019; 7:5125-5131. [DOI: 10.1039/c9tb01279f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TR-OClexhibits ultra-high sensitivity towards HOCl with a 7000-fold enhancement in the fluorescence ratio (I589/I477) and a detection limit of 1.29 nM, which is one of the highest recorded so far.
Collapse
Affiliation(s)
- Qinya Duan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Zejun Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Ke Cheng
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Jie Zhang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| |
Collapse
|
39
|
Xing J, Gong Q, Zhang R, Sun S, Zou R, Wu A. A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging. Chem Commun (Camb) 2018; 54:8773-8776. [DOI: 10.1039/c8cc05048a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel non-enzymatic hydrolytic probe for DPP IV is obtained.
Collapse
Affiliation(s)
- Jie Xing
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Qiuyu Gong
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shan Sun
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Ruifen Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| |
Collapse
|
40
|
Jiang Y, Zheng G, Duan Q, Yang L, Zhang J, Zhang H, He J, Sun H, Ho D. Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. Chem Commun (Camb) 2018; 54:7967-7970. [DOI: 10.1039/c8cc03963a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two fluorescent probes have been developed to detect HOCl with ultra-high sensitivity and employed to image exogenous/endogenous HOCl in living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Qinya Duan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Liu Yang
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Jie Zhang
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- Guangdong
- China
| | - Hongyan Sun
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Derek Ho
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|