1
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
2
|
Song G, Lee S, Jeong KS. Complexation-driven assembly of imine-linked helical receptors showing adaptive folding and temperature-dependent guest selection. Nat Commun 2024; 15:1501. [PMID: 38374171 PMCID: PMC10876968 DOI: 10.1038/s41467-024-45322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The development of synthetic receptors capable of selectively binding guests with diverse structures and multiple functional groups poses a significant challenge. Here, we present the efficient assembly of foldamer-based receptors for monosaccharides, utilising the principles of complexation-induced equilibrium shifting and adaptive folding. Diimine 4 can be quantitatively assembled from smaller components when D-galactose is added as a guest among monosaccharides we examined. During this assembly, dual complexation-induced equilibrium shifts toward both the formation of diimine 4 and the conversion of D-galactose into α-D-galactofuranose are observed. Diimine 6 is quantitatively assembled in the presence of two different guests, methyl β-D-glucopyranoside and methyl β-D-galactopyranoside, resulting in the formation of two dimeric complexes: (6-MP)2⊃(methyl β-D-glucopyranoside)2 and (6-MM)2⊃(methyl β-D-galactopyranoside∙2H2O)2, respectively. These two complexes exhibit distinct folding structures with domain-swapping cavities depending on the bound guest and temperature. Interestingly, (6-MM)2⊃(methyl β-D-galactopyranoside∙2H2O)2 is exclusively formed at lower temperatures, while (6-MP)2⊃(methyl β-D-glucopyranoside)2 is only formed at higher temperatures.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Manick AD, Li C, Antonetti E, Albalat M, Cotelle Y, Nava P, Dutasta JP, Chatelet B, Martinez A. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry 2023; 29:e202203212. [PMID: 36563113 DOI: 10.1002/chem.202203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/24/2022]
Abstract
The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.
Collapse
Affiliation(s)
- Anne-Doriane Manick
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Chunyang Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Elise Antonetti
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Muriel Albalat
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Bastien Chatelet
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
5
|
Milanesi F, Unione L, Ardá A, Nativi C, Jiménez-Barbero J, Roelens S, Francesconi O. Biomimetic Tweezers for N-Glycans: Selective Recognition of the Core GlcNAc 2 Disaccharide of the Sialylglycopeptide SGP. Chemistry 2023; 29:e202203591. [PMID: 36597924 DOI: 10.1002/chem.202203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In recent years, glycomics have shown how pervasive the role of carbohydrates in biological systems is and how chemical tools are essential to investigate glycan function and modulate carbohydrate-mediated processes. Biomimetic receptors for carbohydrates can carry out this task but, although significant affinities and selectivities toward simple saccharides have been achieved, targeting complex glycoconjugates remains a goal yet unattained. In this work we report the unprecedented recognition of a complex biantennary sialylglycopeptide (SGP) by a tweezers-shaped biomimetic receptor, which selectively binds to the core GlcNAc2 disaccharide of the N-glycan with an affinity of 170 μM. Because of the simple structure and the remarkable binding ability, this biomimetic receptor can represent a versatile tool for glycoscience, opening the way to useful applications.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, University of Florence, Via L. Sacconi 6, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
6
|
Leibiger B, Stapf M, Mazik M. Cycloalkyl Groups as Building Blocks of Artificial Carbohydrate Receptors: Studies with Macrocycles Bearing Flexible Side-Arms. Molecules 2022; 27:7630. [PMID: 36364458 PMCID: PMC9654292 DOI: 10.3390/molecules27217630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/29/2023] Open
Abstract
The cyclopentyl group was expected to act as a building block for artificial carbohydrate receptors and to participate in van der Waals contacts with the carbohydrate substrate in a similar way as observed for the pyrrolidine ring of proline in the crystal structures of protein-carbohydrate complexes. Systematic binding studies with a series of 1,3,5-trisubstituted 2,4,6-triethylbenzenes bearing various cycloalkyl groups as recognition units provided indications of the involvement of these groups in the complexation process and showed the influence of the ring size on the receptor efficiency. Representatives of compounds that exhibit a macrocyclic backbone and flexible side arms were now chosen as further model systems to investigate whether the previously observed effects represent a general trend. Binding studies with these macrocycles towards β-D-glucopyranoside, an all-equatorial substituted carbohydrate substrate, included 1H NMR spectroscopic titrations and microcalorimetric investigations. The performed studies confirmed the previously observed tendency and showed that the compound bearing cyclohexyl groups displays the best binding properties.
Collapse
Affiliation(s)
| | | | - Monika Mazik
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
7
|
Giuffrida SG, Forysiak W, Cwynar P, Szweda R. Shaping Macromolecules for Sensing Applications—From Polymer Hydrogels to Foldamers. Polymers (Basel) 2022; 14:polym14030580. [PMID: 35160568 PMCID: PMC8840496 DOI: 10.3390/polym14030580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sensors are tools for detecting, recognizing, and recording signals from the surrounding environment. They provide measurable information on chemical or physical changes, and thus are widely used in diagnosis, environment monitoring, food quality checks, or process control. Polymers are versatile materials that find a broad range of applications in sensory devices for the biomedical sector and beyond. Sensory materials are expected to exhibit a measurable change of properties in the presence of an analyte or a stimulus, characterized by high sensitivity and selectivity of the signal. Signal parameters can be tuned by material features connected with the restriction of macromolecule shape by crosslinking or folding. Gels are crosslinked, three-dimensional networks that can form cavities of different sizes and forms, which can be adapted to trap particular analytes. A higher level of structural control can be achieved by foldamers, which are macromolecules that can attain well-defined conformation in solution. By increasing control over the three-dimensional structure, we can improve the selectivity of polymer materials, which is one of the crucial requirements for sensors. Here, we discuss various examples of polymer gels and foldamer-based sensor systems. We have classified and described applied polymer materials and used sensing techniques. Finally, we deliberated the necessity and potential of further exploration of the field towards the increased selectivity of sensory devices.
Collapse
Affiliation(s)
- Simone Giuseppe Giuffrida
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
| | - Weronika Forysiak
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Pawel Cwynar
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Roza Szweda
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Correspondence:
| |
Collapse
|
8
|
Amrhein F, Mazik M. Compounds Combining a Macrocyclic Building Block and Flexible Side‐Arms as Carbohydrate Receptors: Syntheses and Structure‐Binding Activity Relationship Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Felix Amrhein
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
9
|
Schaapkens X, van Sluis RN, Bobylev EO, Reek JNH, Mooibroek TJ. A Water Soluble Pd 2 L 4 Cage for Selective Binding of Neu5Ac. Chemistry 2021; 27:13719-13724. [PMID: 34486179 PMCID: PMC8518546 DOI: 10.1002/chem.202102176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/30/2022]
Abstract
The sialic acid N-acetylneuraminic acid (Neu5Ac) and its derivatives are involved in many biological processes including cell-cell recognition and infection by influenza. Molecules that can recognize Neu5Ac might thus be exploited to intervene in or monitor such events. A key obstacle in this development is the sparse availability of easily prepared molecules that bind to this carbohydrate in its natural solvent; water. Here, we report that the carbohydrate binding pocket of an organic soluble [Pd2 L4 ]4+ cage could be equipped with guanidinium-terminating dendrons to give the water soluble [Pd2 L4 ][NO3 ]16 cage 7. It was shown by means of NMR spectroscopy that 7 binds selectively to anionic monosaccharides and strongest to Neu5Ac with Ka =24 M-1 . The cage had low to no affinity for the thirteen neutral saccharides studied. Aided by molecular modeling, the selectivity for anionic carbohydrates such as Neu5Ac could be rationalized by the presence of charge assisted hydrogen bonds and/or the presence of a salt bridge with a guanidinium solubilizing arm of 7. Establishing that a simple coordination cage such as 7 can already selectively bind to Neu5Ac in water paves the way to improve the stability, affinity and/or selectivity properties of M2 L4 cages for carbohydrates and other small molecules.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Roy N. van Sluis
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Eduard O. Bobylev
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
10
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
11
|
Bala R, Behal J, Pal Sharma R, Prakash V, Mayer P, Piotrowski H, Schütt T, Klapötke TM. Cationic cobaltammines as anion receptors: Sonochemical synthesis, characterization and comparative account of antibacterial activity of nano and non-nano pentaammineazidocoablt(III) compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Li D, Ma C, Xiang J, Zhang K, Yang L, Gan Q. A Disulfide Switch Providing Absolute Handedness Control in Double Helices via Conversion from the Antiparallel to Parallel Helical Pattern. Chemistry 2021; 27:11663-11669. [PMID: 34014575 DOI: 10.1002/chem.202101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/09/2022]
Abstract
A strategy to reversibly switch the parallel/antiparallel helical conformation of aromatic double helices through the formation/breakage of a disulfide bond is presented. Single-crystal X-ray structures, NMR, and circular dichroism spectroscopy demonstrate that the double helices with terminal thiol groups favor an antiparallel helical arrangement both in the solid state and in solution, while the P/M bias of helicity induced by chiral segments from another extremity of the sequence is weak in this structural motif. The antiparallel helices can be rearranged to parallel helices through the disulfide connection of the sequences. This change enhances the bias of helical handedness and results in absolute chirality control of the double helices. The handedness-mediated process can be governed by the oxidation-reduction cycle, thereby switching the structural arrangement and the enhancement of chiral bias. In addition, we find that the sequences can dimerize into an intermolecular double helix with the disulfide connection. And the helical handedness is also fully controlled due to the head-to-head structural motif.
Collapse
Affiliation(s)
- Dongyao Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Junfeng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ling Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Schaapkens X, Bobylev EO, Reek JNH, Mooibroek TJ. A [Pd 2L 4] 4+ cage complex for n-octyl-β-d-glycoside recognition. Org Biomol Chem 2021; 18:4734-4738. [PMID: 32608444 DOI: 10.1039/d0ob01081b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cage complex [Pd294]4+ (3') binds n-octyl glycosides in DCM/DMSO (9 : 1) solution with Ka ≈ 51 M-1 for n-Oct-β-d-Glc and Ka ≈ 29 M-1 for n-Oct-β-d-Gal.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Francesconi O, Milanesi F, Nativi C, Roelens S. Molecular Recognition of Disaccharides in Water: Preorganized Macrocyclic or Adaptive Acyclic? Chemistry 2021; 27:10456-10460. [PMID: 33945180 PMCID: PMC8361761 DOI: 10.1002/chem.202101238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/02/2022]
Abstract
When facing the dilemma of following a preorganized or adaptive design approach in conceiving the architecture of new biomimetic receptors for carbohydrates, shape-persistent macrocyclic structures were most often chosen to achieve effective recognition of neutral saccharides in water. In contrast, acyclic architectures have seldom been explored, even though potentially simpler and more easily accessible. In this work, comparison of the binding properties of two structurally related diaminocarbazolic receptors, featuring a macrocyclic and an acyclic tweezer-shaped architecture, highlighted the advantages provided by the acyclic receptor in terms of selectivity in the recognition of 1,4-disaccharides of biological interest. Selective recognition of GlcNAc2 , the core fragment of N-glycans exposed on the surface of enveloped viruses, stands as an emblematic example. NMR spectroscopic data and molecular modeling calculations were used to ascertain the differences in binding mode and to shed light on the origin of recognition efficacy and selectivity.
Collapse
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry “Ugo Schiff” and INSTMUniversity of FlorencePolo Scientifico e Tecnologico50019Sesto Fiorentino, FirenzeItaly
| | - Francesco Milanesi
- Department of Chemistry “Ugo Schiff” and INSTMUniversity of FlorencePolo Scientifico e Tecnologico50019Sesto Fiorentino, FirenzeItaly
- Magnetic Resonance Center CERMVia L. Sacconi 650019Sesto Fiorentino, FirenzeItaly
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff” and INSTMUniversity of FlorencePolo Scientifico e Tecnologico50019Sesto Fiorentino, FirenzeItaly
| | - Stefano Roelens
- Department of Chemistry “Ugo Schiff” and INSTMUniversity of FlorencePolo Scientifico e Tecnologico50019Sesto Fiorentino, FirenzeItaly
| |
Collapse
|
15
|
Köhler L, Hübler C, Seichter W, Mazik M. Binding modes of methyl α-d-glucopyranoside to an artificial receptor in crystalline complexes. RSC Adv 2021; 11:22221-22229. [PMID: 35480817 PMCID: PMC9034237 DOI: 10.1039/d1ra03390e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/28/2022] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Compared to the numerous X-ray crystal structures of protein-carbohydrate complexes, the successful elucidation of the crystal structures of complexes between artificial receptors and carbohydrates has been very rarely reported in the literature. In this work, we describe the binding modes of two complexes formed between methyl α-d-glucopyranoside and an artificial receptor belonging to the class of compounds consisting of a 1,3,5-trisubstituted 2,4,6-trialkylbenzene scaffold. It is particularly noteworthy that these two complexes are present in one crystal structure, as was observed by us for the first time in the case of the recently reported three crystal structures of the complexes with methyl β-d-glucopyranoside, each containing two different receptor-carbohydrate complexes. The noncovalent interactions stabilizing the new complexes are compared with those observed in the aforementioned crystalline complexes with methyl β-d-glucopyranoside.
Collapse
Affiliation(s)
- Linda Köhler
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany https://tu-freiberg.de/fakultaet2/orgch +49 3731393170 +49 3731392389
| | - Conrad Hübler
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany https://tu-freiberg.de/fakultaet2/orgch +49 3731393170 +49 3731392389
| | - Wilhelm Seichter
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany https://tu-freiberg.de/fakultaet2/orgch +49 3731393170 +49 3731392389
| | - Monika Mazik
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany https://tu-freiberg.de/fakultaet2/orgch +49 3731393170 +49 3731392389
| |
Collapse
|
16
|
Schaapkens X, Holdener JH, Tolboom J, Bobylev EO, Reek JNH, Mooibroek TJ. An Octa-Urea [Pd 2 L 4 ] 4+ Cage that Selectively Binds to n-octyl-α-D-Mannoside. Chemphyschem 2021; 22:1187-1192. [PMID: 33878234 PMCID: PMC8252426 DOI: 10.1002/cphc.202100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Designing compounds for the selective molecular recognition of carbohydrates is a challenging task for supramolecular chemists. Macrocyclic compounds that incorporate isophtalamide or bisurea spacers linking two aromatic moieties have proven effective for the selective recognition of all-equatorial carbohydrates. Here, we explore the molecular recognition properties of an octa-urea [Pd2 L4 ]4+ cage complex (4). It was found that small anions like NO3- and BF4- bind inside 4 and inhibit binding of n-octyl glycosides. When the large non-coordinating anion 'BArF ' was used, 4 showed excellent selectivity towards n-octyl-α-D-Mannoside with binding in the order of Ka ≈16 M-1 versus non-measurable affinities for other glycosides including n-octyl-β-D-Glucoside (in CH3 CN/H2 O 91 : 9).
Collapse
Affiliation(s)
- Xander Schaapkens
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joël H. Holdener
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Jens Tolboom
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard O. Bobylev
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
17
|
Francesconi O, Milanesi F, Nativi C, Roelens S. A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc
2
Disaccharide in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry “Ugo Schiff” and INSTM University of Florence, Polo Scientifico e Tecnologico 50019 Sesto Fiorentino Firenze Italy
| | - Francesco Milanesi
- Department of Chemistry “Ugo Schiff” and INSTM University of Florence, Polo Scientifico e Tecnologico 50019 Sesto Fiorentino Firenze Italy
- Magnetic Resonance Center CERM Via L. Sacconi 6 50019 Sesto Fiorentino Firenze Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff” and INSTM University of Florence, Polo Scientifico e Tecnologico 50019 Sesto Fiorentino Firenze Italy
| | - Stefano Roelens
- Department of Chemistry “Ugo Schiff” and INSTM University of Florence, Polo Scientifico e Tecnologico 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
18
|
Seedorf T, Kirschning A, Solga D. Natural and Synthetic Oligoarylamides: Privileged Structures for Medical Applications. Chemistry 2021; 27:7321-7339. [PMID: 33481284 PMCID: PMC8251530 DOI: 10.1002/chem.202005086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The term "privileged structure" refers to a single molecular substructure or scaffold that can serve as a starting point for high-affinity ligands for more than one receptor type. In this report, a hitherto overlooked group of privileged substructures is addressed, namely aromatic oligoamides, for which there are natural models in the form of cystobactamids, albicidin, distamycin A, netropsin, and others. The aromatic and heteroaromatic core, together with a flexible selection of substituents, form conformationally well-defined scaffolds capable of specifically binding to conformationally well-defined regions of biomacromolecules such as helices in proteins or DNA often by acting as helices mimics themselves. As such, these aromatic oligoamides have already been employed to inhibit protein-protein and nucleic acid-protein interactions. This article is the first to bring together the scattered knowledge about aromatic oligoamides in connection with biomedical applications.
Collapse
Affiliation(s)
- Tim Seedorf
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Danny Solga
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
19
|
Francesconi O, Milanesi F, Nativi C, Roelens S. A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc 2 Disaccharide in Water. Angew Chem Int Ed Engl 2021; 60:11168-11172. [PMID: 33666317 PMCID: PMC8252438 DOI: 10.1002/anie.202100560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Indexed: 12/22/2022]
Abstract
GlcNAc2 is the core disaccharide fragment present in N-glycans exposed on the surface of enveloped viruses of high health concern, such as coronaviruses. Because N-glycans are directly involved in the docking of viruses to host cells, recognition of GlcNAc2 by a biomimetic receptor may be a convenient alternative to the use of lectins to interfere with viral entry and infection. Herein, we describe a simple biomimetic receptor recognizing the methyl-β-glycoside of GlcNAc2 in water with an unprecedented affinity of 160 μM, exceeding that of more structurally complex receptors reported in the literature. The tweezers-shaped acyclic structure exhibits marked selectivity among structurally related disaccharides, and complete discrimination between mono- and disaccharides. Molecular modelling calculations supported by NOE data provided a three-dimensional description of the binding mode, shedding light on the origin of the affinities and selectivities exhibited by the receptor.
Collapse
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry "Ugo Schiff" and INSTM, University of Florence, Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino, Firenze, Italy
| | - Francesco Milanesi
- Department of Chemistry "Ugo Schiff" and INSTM, University of Florence, Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, Via L. Sacconi 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" and INSTM, University of Florence, Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" and INSTM, University of Florence, Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
20
|
Mateus P, Jacquet A, Méndez-Ardoy A, Boulloy A, Kauffmann B, Pecastaings G, Buffeteau T, Ferrand Y, Bassani DM, Huc I. Sensing a binding event through charge transport variations using an aromatic oligoamide capsule. Chem Sci 2021; 12:3743-3750. [PMID: 34163648 PMCID: PMC8179446 DOI: 10.1039/d0sc06060g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
The selective binding properties of a 13-mer oligoamide foldamer capsule composed of 4 different aromatic subunits are reported. The capsule was designed to recognize dicarboxylic acids through multiple-point interactions owing to a combination of protonation/deprotonation events, H-bonding, and geometrical constraints imparted by the rigidity of the foldamer backbone. Compared to tartaric acid, binding of 2,2-difluorosuccinic acid or 2,2,3,3-tetrafluorosuccinic acid resulted in symmetry breaking due to deprotonation of only one of the two carboxylic acid groups of the encapsulated species as shown by NMR studies in solution and by single-crystal X-ray diffraction in the solid state. An analogous 14-mer foldamer capsule terminated with a thiol anchoring group was used to probe the complexation event in self-assembled monolayers on Au substrates. Ellipsometry and polarization-modulation infrared absorption-reflection spectroscopy studies were consistent with the formation of a single molecule layer of the foldamer capsule oriented vertically with respect to the surface. The latter underwent smooth complexation of 2,2-difluorosuccinic acid with deprotonation of one of the two carboxylic acid groups. A significant (80-fold) difference in the charge transport properties of the monolayer upon encapsulation of the dicarboxylic acid was evidenced from conducting-AFM measurements (S = 1.1 × 10-9 vs. 1.4 × 10-11 ohm-1 for the empty and complexed capsule, respectively). The modulation in conductivity was assigned to protonation of the aromatic foldamer backbone.
Collapse
Affiliation(s)
- Pedro Mateus
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Antoine Jacquet
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | | | - Alice Boulloy
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS UMS 3033/US001 IECB 2 rue Escarpit 33600 Pessac France
| | - Gilles Pecastaings
- Inst. Polytechnique de Bordeaux, CNRS UMR 5629 LCPO 16, Av. Pey-Berland 33600 Pessac France
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS UMR 5255 ISM 351, Cours de la Libération 33405 Talence France
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Dario M Bassani
- Univ. Bordeaux, CNRS UMR 5255 ISM 351, Cours de la Libération 33405 Talence France
| | - Ivan Huc
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandstraße 5-13 81377 Munich Germany
- Cluster of Excellence e-Conversion 85748 Garching Germany
| |
Collapse
|
21
|
Pramanik S, Kauffmann B, Hecht S, Ferrand Y, Huc I. Light-mediated chiroptical switching of an achiral foldamer host in presence of a carbohydrate guest. Chem Commun (Camb) 2021; 57:93-96. [PMID: 33332504 DOI: 10.1039/d0cc06484j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoresponsive diarylethene was incorporated in an achiral helical foldamer container. A carbohydrate guest was found to induce opposite handedness upon binding to the open and closed forms of the diarylethene-containing foldamer, thus enabling chiroptical switching of an achiral host mediated by a chiral guest.
Collapse
Affiliation(s)
- Susnata Pramanik
- Department Pharmazie and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
22
|
Song Y, Schaufelberger F, Ashbridge Z, Pirvu L, Vitorica-Yrezabal IJ, Leigh DA. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots. Chem Sci 2020; 12:1826-1833. [PMID: 34163946 PMCID: PMC8179330 DOI: 10.1039/d0sc05897a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of β-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)—a measure of knot tightness (a high value corresponding to looseness)—for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design. Spacers linking 2,6-pyridinedicarboxamide units influence the tightness of the corresponding lanthanide-coordinated overhand knot. β-Hairpin forming motifs generate a metal-coordinated pseudopeptide with a knotted tertiary structure.![]()
Collapse
Affiliation(s)
- Yiwei Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China
| | | | - Zoe Ashbridge
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - David A Leigh
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China .,Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Köhler L, Seichter W, Mazik M. Complexes Formed between Artificial Receptors and β‐Glucopyranoside in the Crystalline State. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Linda Köhler
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| | - Wilhelm Seichter
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie Technische Universität Bergakademie Freiberg Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
24
|
Song G, Jeong KS. Aromatic Helical Foldamers as Nucleophilic Catalysts for the Regioselective Acetylation of Octyl β-d-Glucopyranoside. Chempluschem 2020; 85:2475-2481. [PMID: 33206472 DOI: 10.1002/cplu.202000685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Two indolocarbazole-naphthyridine foldamers 2 and 3 that fold into helical conformations were prepared. The 4-(N,N-dimethylamino)pyridine (DMAP) moiety was introduced at one end of the foldamer strands to develop foldamer-based catalysts for the site-selective acylation of polyols. These foldamers adopt helical conformations containing internal cavities capable of binding octyl β-d-glucopyranoside. The association constants were determined to be 1.9 (±0.1)×105 M-1 for 2 and 2.1 (±0.1)×105 M-1 for 3 in CH2 Cl2 at 25 °C. In the presence of DMAP, 2 or 3 as the catalysts, octyl β-d-glucopyranoside was subjected to acetylation under identical reaction conditions. The DMAP-catalysed reaction afforded the random distribution of the monoacetylates (6-OAc : 4-OAc : 3-OAc : 2-OAc=33 : 24 : 41 : 2). In contrast, foldamers 2 and 3 led to the predominant formation of 6-OAc. The relative distributions were estimated to be 6-OAc : 4-OAc : 3-OAc=88 : 4 : 6 : ∼0 with 2 and 6-OAc : 4-OAc : 3-OAc : 2-OAc=90 : 3 : 6 : 1 with 3.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
25
|
Kim KM, Song G, Lee S, Jeon H, Chae W, Jeong K. Template‐Directed Quantitative One‐Pot Synthesis of Homochiral Helical Receptors Enabling Enantioselective Binding. Angew Chem Int Ed Engl 2020; 59:22475-22479. [DOI: 10.1002/anie.202011230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Kyung Mog Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Geunmoo Song
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Seungwon Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Hae‐Geun Jeon
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Woojeong Chae
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Kyu‐Sung Jeong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
26
|
Kim KM, Song G, Lee S, Jeon H, Chae W, Jeong K. Template‐Directed Quantitative One‐Pot Synthesis of Homochiral Helical Receptors Enabling Enantioselective Binding. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyung Mog Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Geunmoo Song
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Seungwon Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Hae‐Geun Jeon
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Woojeong Chae
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Kyu‐Sung Jeong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
27
|
Takaishi K, Nath BD, Yamada Y, Kosugi H, Ema T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO
2
Fixations. Angew Chem Int Ed Engl 2019; 58:9984-9988. [DOI: 10.1002/anie.201904224] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Bikash Dev Nath
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Yuya Yamada
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Hiroyasu Kosugi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
28
|
Takaishi K, Nath BD, Yamada Y, Kosugi H, Ema T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO
2
Fixations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Bikash Dev Nath
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Yuya Yamada
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Hiroyasu Kosugi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
29
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
30
|
Yan T, Yang F, Qi S, Fan X, Liu S, Ma N, Luo Q, Dong Z, Liu J. Supramolecular nanochannels self-assembled by helical pyridine–pyridazine oligomers. Chem Commun (Camb) 2019; 55:2509-2512. [DOI: 10.1039/c8cc10098e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present a novel helix-based supramolecular nanochannel, wherein alkali ions could be easily collected, transported and even controllably released.
Collapse
Affiliation(s)
- Tengfei Yan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ningning Ma
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
31
|
Saha S, Kauffmann B, Ferrand Y, Huc I. Selective Encapsulation of Disaccharide Xylobiose by an Aromatic Foldamer Helical Capsule. Angew Chem Int Ed Engl 2018; 57:13542-13546. [DOI: 10.1002/anie.201808370] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Subrata Saha
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux; CNRS; INSERM, UMS3033; Institut Européen de Chimie et Biologie (IECB); 2 rue Escarpit 33600 Pessac France
| | - Yann Ferrand
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
- Department Pharmazie; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
32
|
Saha S, Kauffmann B, Ferrand Y, Huc I. Selective Encapsulation of Disaccharide Xylobiose by an Aromatic Foldamer Helical Capsule. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Subrata Saha
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux; CNRS; INSERM, UMS3033; Institut Européen de Chimie et Biologie (IECB); 2 rue Escarpit 33600 Pessac France
| | - Yann Ferrand
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- UMR 5248-CBMN, Univ. Bordeaux-CNRS-; Institut Polytechnique de Bordeaux; Institut Européen de Chimie et Biologie; 2 rue Robert Escarpit 33600 Pessac France
- Department Pharmazie; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|