1
|
Broto-Ribas A, Gutiérrez MS, Imaz I, Carné-Sánchez A, Gándara F, Juanhuix J, Maspoch D. Synthesis of the two isomers of heteroleptic Rh 12L 6L' 6 metal-organic polyhedra by screening of complementary linkers. Chem Commun (Camb) 2022; 58:10480-10483. [PMID: 35880835 DOI: 10.1039/d2cc03220a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesised and characterised the two possible isomers of heteroleptic trigonal antiprismatic M12L6L'6 MOPs by screening reactions of rhodium acetate with different pairs of complementary dicarboxylate linkers. The resulting 12 new MOPs (eight of isomer A + four of isomer B) are microporous in the solid state, exhibiting Brunauer-Emmett-Teller (BET) surface areas as high as 770 m2 g-1.
Collapse
Affiliation(s)
- Anna Broto-Ribas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Susana Gutiérrez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Felipe Gándara
- Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid - CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Judith Juanhuix
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Khobotov‐Bakishev A, Hernández‐López L, von Baeckmann C, Albalad J, Carné‐Sánchez A, Maspoch D. Metal-Organic Polyhedra as Building Blocks for Porous Extended Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104753. [PMID: 35119223 PMCID: PMC9008419 DOI: 10.1002/advs.202104753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Indexed: 05/29/2023]
Abstract
Metal-organic polyhedra (MOPs) are a subclass of coordination cages that can adsorb and host species in solution and are permanently porous in solid-state. These characteristics, together with the recent development of their orthogonal surface chemistry and the assembly of more stable cages, have awakened the latent potential of MOPs to be used as building blocks for the synthesis of extended porous networks. This review article focuses on exploring the key developments that make the extension of MOPs possible, highlighting the most remarkable examples of MOP-based soft materials and crystalline extended frameworks. Finally, the article ventures to offer future perspectives on the exploitation of MOPs in fields that still remain ripe toward the use of such unorthodox molecular porous platforms.
Collapse
Affiliation(s)
- Akim Khobotov‐Bakishev
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
| | - Laura Hernández‐López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
| | - Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
| | - Jorge Albalad
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
- Centre for Advanced Nanomaterials and Department of ChemistryThe University of AdelaideNorth TerraceAdelaideSouth Australia5000Australia
| | - Arnau Carné‐Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UAB, BellaterraBarcelona08193Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Pg. Lluís Companys 23Barcelona08010Spain
| |
Collapse
|
3
|
Liu G, Yang Z, Zhou M, Wang Y, Yuan D, Zhao D. Heterogeneous postassembly modification of zirconium metal-organic cages in supramolecular frameworks. Chem Commun (Camb) 2021; 57:6276-6279. [PMID: 34075947 DOI: 10.1039/d1cc01606g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report a heterogeneous postassembly modification (PAM) to synthesize a zirconium metal-organic cage decorated with acrylate functional groups, ZrT-1-AA, which cannot be synthesized by direct coordination-driven self-assembly owing to the reactivity and instability of the ligand. The PAM process is carried out in a single-crystal-to-single-crystal transformation under mild reaction conditions with high efficiency, which is confirmed by ESI-TOF-MS and 1H NMR. In addition, ZrT-1-AA is crosslinked into shaped materials to demonstrate its potential applications. The proposed PAM strategy sheds light on the development of Zr-MOCs decorated with reactive functional groups, whose introduction is challenging or impossible via direct self-assembly.
Collapse
Affiliation(s)
- Guoliang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. and State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Mi Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
4
|
Do M, Rogers D, Kaminsky W, Xiao DJ. Robust Synthetic Route toward Anisotropic Metal-Organic Cages with Tunable Surface Chemistry. Inorg Chem 2021; 60:7602-7606. [PMID: 33973769 DOI: 10.1021/acs.inorgchem.1c00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic cages with well-defined interior cavities and tunable surface chemistry serve as attractive building blocks for new types of soft nanoporous materials. While a compositionally diverse repertoire of metal-organic cages exists, the vast majority feature highly symmetric cores. Here, we report a robust, generalizable synthetic route toward anisotropic copper paddlewheel-based cages with tunable pendant amide groups. An isostructural family with increasingly hydrophobic surface properties has been synthesized and characterized by single-crystal X-ray diffraction, gas sorption analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and 1H NMR digestion experiments. The metal-organic cages reported here may enable a deeper study of how anisotropy influences the long-range structure and emergent function of soft nanoporous materials.
Collapse
Affiliation(s)
- My Do
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan Rogers
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dianne J Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
5
|
Hosono N. Design of Porous Coordination Materials with Dynamic Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nobuhiko Hosono
- Department of Advanced Material Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Legrand A, Wang Z, Troyano J, Furukawa S. Directional asymmetry over multiple length scales in reticular porous materials. Chem Sci 2020; 12:18-33. [PMID: 34163581 PMCID: PMC8178947 DOI: 10.1039/d0sc05008c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications. Design strategies for the controlled assembly of discrete and extended reticular materials with asymmetric configurations of pores or architectures.![]()
Collapse
Affiliation(s)
- Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
7
|
Iwai K, Yamagishi H, Herzberger C, Sato Y, Tsuji H, Albrecht K, Yamamoto K, Sasaki F, Sato H, Asaithambi A, Lorke A, Yamamoto Y. Single‐Crystalline Optical Microcavities from Luminescent Dendrimers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kohei Iwai
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Hiroshi Yamagishi
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Colin Herzberger
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
- Institute of Organic Chemistry Clausthal University of Technology Adolph-Roemer-Straße 2A 38678 Clausthal-Zellerfeld Germany
| | - Yuji Sato
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Hayato Tsuji
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Ken Albrecht
- Laboratory for Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- ERATO Yamamoto Atom Hybrid Project Japan Science and Technology Agency (JST) 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen Fukuoka 816-8580 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- ERATO Yamamoto Atom Hybrid Project Japan Science and Technology Agency (JST) 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
| | - Fumio Sasaki
- Electronics and Photonics Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Hiroyasu Sato
- Rigaku Corporation 12-9-3 Matsubara Akishima Tokyo 196-8666 Japan
| | - Aswin Asaithambi
- Faculty of Physics and CENIDE University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| | - Axel Lorke
- Faculty of Physics and CENIDE University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| | - Yohei Yamamoto
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
8
|
Iwai K, Yamagishi H, Herzberger C, Sato Y, Tsuji H, Albrecht K, Yamamoto K, Sasaki F, Sato H, Asaithambi A, Lorke A, Yamamoto Y. Single‐Crystalline Optical Microcavities from Luminescent Dendrimers. Angew Chem Int Ed Engl 2020; 59:12674-12679. [DOI: 10.1002/anie.202000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Kohei Iwai
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Hiroshi Yamagishi
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Colin Herzberger
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
- Institute of Organic Chemistry Clausthal University of Technology Adolph-Roemer-Straße 2A 38678 Clausthal-Zellerfeld Germany
| | - Yuji Sato
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Hayato Tsuji
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Ken Albrecht
- Laboratory for Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- ERATO Yamamoto Atom Hybrid Project Japan Science and Technology Agency (JST) 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen Fukuoka 816-8580 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
- ERATO Yamamoto Atom Hybrid Project Japan Science and Technology Agency (JST) 4259 Nagatsuta Midori-ku Yokohama 226-8503 Japan
| | - Fumio Sasaki
- Electronics and Photonics Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Hiroyasu Sato
- Rigaku Corporation 12-9-3 Matsubara Akishima Tokyo 196-8666 Japan
| | - Aswin Asaithambi
- Faculty of Physics and CENIDE University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| | - Axel Lorke
- Faculty of Physics and CENIDE University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| | - Yohei Yamamoto
- Department of Materials Science Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
9
|
Hanprasit S, Yoshinari N, Saito D, Kato M, Konno T. Homoleptic versus heteroleptic trinuclear systems with mixed l-cysteinate and d-penicillaminate regulated by a diphosphine linker. Dalton Trans 2020; 49:3503-3509. [DOI: 10.1039/d0dt00440e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The generation of homoleptic versus heteroleptic coordination compounds was controlled by slight modification of the diphosphine linker in a digold(i) metalloligand.
Collapse
Affiliation(s)
- Sasikarn Hanprasit
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Nobuto Yoshinari
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Daisuke Saito
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masako Kato
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| |
Collapse
|
10
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure–Property Relationship of Metal–Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Tao Hong
- Deparmemt of ChemistryUniversity of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Xiaozhi Zhan
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Tao Zhu
- Institute of PhysicsChinese Academy of Science Beijing 100190 China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure-Property Relationship of Metal-Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019; 58:17412-17417. [PMID: 31545541 DOI: 10.1002/anie.201909241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Indexed: 12/11/2022]
Abstract
Monodispersed hairy nanocomposites with typical 2 nm (isophthalic acid)24 Cu24 metal-organic polyhedra (MOP) as a core protected by 24 polymer chains with controlled narrow molecular weight distribution has been probed by imaging and scattering studies for the heterogeneity of polymers in the nanocomposites and the confinement effect the MOPs imposing on anchored polymers. Typical confined-extending surrounded by one entanglement area is proposed to describe the physical states of the polymer chains. This model dictates the counterintuitive thermal and rheological properties and prohibited solvent exchange properties of the nanocomposites, whilst those polymer chain states are tunable and deterministic based on their component inputs. From the relationship between the structure and behavior of the MOP nanocomposites, a MOP-composited thermoplastic elastomer was obtained, providing practical solutions to improve mechanical/rheological performances and processabilities of inorganic MOPs.
Collapse
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Hong
- Deparmemt of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee, 37996, USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Xiaozhi Zhan
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Tao Zhu
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Mai HD, Tran NM, Yoo H. Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Hosono N, Kitagawa S. Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages. Acc Chem Res 2018; 51:2437-2446. [PMID: 30252435 DOI: 10.1021/acs.accounts.8b00361] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) have been well-recognized as emerging porous materials that afford highly tailorable and well-defined nanoporous structures with three-dimensional lattices. Because of their microporous nature, MOFs can accommodate small molecules in their lattice structure, thus discriminating them on the basis of their size and physical properties and enabling their separation even in the gas phase. Such characteristics of MOFs have attracted significant attention in recent years for diverse applications and have ignited a worldwide race toward their development in both academic and industrial fields. Most recently, new challenges in porous materials science demand processable liquid, melt, and amorphous forms of MOFs. This trend will provide a new fundamental class of microporous materials for further widespread applications in many fields. In particular, the application of flexible membranes for gas separation is expected as an efficient solution to tackle current energy-intensive issues. To date, amorphous MOFs have been prepared in a top-down approach by the introduction of disorder into the parent frameworks. However, this new paradigm is still in its infancy with respect to the rational design principles that need to be developed for any approach that may include bottom-up synthesis of porous soft materials. Herein we describe recent progress in bottom-up "modular" approaches for the synthesis of porous, processable MOF-based materials, wherein metal-organic cages (MOCs), alternatively called metal-organic polyhedra (MOPs), are used as "modular cavities" to build porous soft materials. The outer periphery of a MOP is decorated with polymeric and dendritic side chains to obtain a polymer-grafted MOP, imparting both solution and thermal processability to the MOP cages, which have an inherent nanocavity along with high tailorability analogous to MOFs. Well-ordered MOP assemblies can be designed to obtain phases ranging from crystals to liquid crystals, allowing the fabrication of flexible free-standing sheets with preservation of the long-range ordering of MOPs. Furthermore, future prospects of the modular design for porous soft materials are provided with the anticipation that the bottom-up design will combine porous materials and soft matter sciences, leading to the discovery and development of many unexplored new materials and devices such as MOF-based self-healing membranes possessing well-defined nanochannels. The macroscopic alignment of channels can be controlled by external factors, including electric and magnetic fields, external forces, and modified surfaces (templating and patterning), which are conventionally used for engineering of soft materials.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Omoto K, Hosono N, Gochomori M, Kitagawa S. Paraffinic metal–organic polyhedrons: solution-processable porous modules exhibiting three-dimensional molecular order. Chem Commun (Camb) 2018; 54:7290-7293. [DOI: 10.1039/c8cc03705a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal–organic polyhedral cages with paraffinic side chains are designed as “porous modules” that self-organize into three-dimensional ordered structures and form into a self-supporting film, affording solution processable porous materials.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University Institute for Advanced Study (KUIAS)
- Kyoto University
- Yoshida Ushinomiya-cho
- Kyoto 606-8501
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University Institute for Advanced Study (KUIAS)
- Kyoto University
- Yoshida Ushinomiya-cho
- Kyoto 606-8501
| | - Mika Gochomori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University Institute for Advanced Study (KUIAS)
- Kyoto University
- Yoshida Ushinomiya-cho
- Kyoto 606-8501
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University Institute for Advanced Study (KUIAS)
- Kyoto University
- Yoshida Ushinomiya-cho
- Kyoto 606-8501
| |
Collapse
|