1
|
Dana J, Ajayakumar MR, Efimov A, Weckman T, Honkala K, Tkachenko NV. Structure dependent activation of a Co molecular catalyst through photoinduced electron transfer from CdTe quantum dots. NANOSCALE 2024. [PMID: 39436211 DOI: 10.1039/d4nr02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Complexes of quantum dots with molecular catalysts are promising building blocks for photo-catalytic applications. Herein, we report the formation of stable complexes between colloidal CdTe quantum dots (CQDs) and two synthesized structurally different cobalt porphyrin derivatives (CoPp and CoPm, with phenyl and mesityl groups attached at the meso positions, respectively) through a sulfur bridge. Using both spectroscopy and computational methods, we found that the porphyrin adopts a "flat" binding mode on the CQD surface. We observed the coordination of the Co center on the CQD surface. This coordination is stronger for CoPp than for CoPm, resulting in a larger red shift in the absorption band. In addition, we measured a four fold increase in the electron transfer (ET) rate from the CQD to CoPp compared to that with CoPm by a transient absorption study and the charge recombination extended to tens of nanoseconds or longer depending on the structure of the porphyrin periphery. A spectrum measured after the ET points to a loss of coordination between the Co and CQD in a CoP/CQD complex. The experimental results are in agreement with density functional theory calculation results on the CoP complexes on CdTe surfaces, pointing to the porphyrin preferring to align along the CQD surface in the ground state. The change of porphyrin alignment from flat alignment before the excitation to upright alignment after the ET is a likely cause for the extended lifetime of the charge-separated (CS) state, due to an increase in the CS distance. Furthermore, the spectrum of the CS state can be assigned to catalytically active CoIP, proposing the applicability of the complexes in CO2 reduction.
Collapse
Affiliation(s)
- Jayanta Dana
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Alexander Efimov
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
2
|
Gadolini S, Kerber RN, Seljamäe-Green RT, Tong W, Farràs P, Corbos EC. Covalently Anchored Molecular Catalyst onto a Graphitic Carbon Nitride Surface for Photocatalytic Epoxidation of Olefins. ACS Catal 2024; 14:14639-14651. [PMID: 39386921 PMCID: PMC11459433 DOI: 10.1021/acscatal.4c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
This study explores an innovative photocatalytic approach using pristine graphitic carbon nitride (C3N4) to anchor iron salen-type complexes (FeSalenCl2) without the need for additional linkers or heterojunctions. The resulting hybrid catalyst, [C3N4-FeCl(Salen)]Chem, exhibits a promising catalytic performance in the selective epoxidation of cyclic and linear olefins using gaseous oxygen as the oxidant. The catalyst's selectivity closely resembles that of the free iron complex, and its effectiveness varies depending on the olefin substrate. Additionally, solvent selection plays a critical role in achieving optimal performance, with acetonitrile proving to be the best choice. The study demonstrates the potential of C3N4 as an environmentally friendly, recyclable, and efficient support for molecular catalysts. The results highlight the versatility and significance of C3N4-based materials in advancing light-driven catalysis.
Collapse
Affiliation(s)
- Sebastiano Gadolini
- Johnson
Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
| | - Rachel N. Kerber
- Johnson
Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
| | | | - Wenming Tong
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan
Institute, University of Galway, University Road, Galway H91 CF50, Ireland
| | - Pau Farràs
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan
Institute, University of Galway, University Road, Galway H91 CF50, Ireland
| | - Elena C. Corbos
- Johnson
Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.
| |
Collapse
|
3
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
4
|
Hennessey S, González-Gómez R, McCarthy K, Burke CS, Le Houérou C, Sarangi NK, McArdle P, Keyes TE, Cucinotta F, Farràs P. Enhanced Photostability and Photoactivity of Ruthenium Polypyridyl-Based Photocatalysts by Covalently Anchoring Onto Reduced Graphene Oxide. ACS OMEGA 2024; 9:13872-13882. [PMID: 38559923 PMCID: PMC10976380 DOI: 10.1021/acsomega.3c08800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Recentstudies toward finding more efficient ruthenium metalloligands for photocatalysis applications have shown that the derivatives of the linear [Ru(dqp)2]2+ (dqp: 2,6-di(quinolin-8-yl)-pyridine) complexes hold significant promise due to their extended emission lifetime in the μs time scale while retaining comparable redox potential, extinction coefficients, and absorption profile in the visible region to [Ru(bpy)3]2+ (bpy: 2,2'-bipyridine) and [Ru(tpy)2]2+ (tpy: 2,2':6',2″-terpyridine) complexes. Nevertheless, its photostability in aqueous solution needs to be improved for its widespread use in photocatalysis. Carbon-based supports have arisen as potential solutions for improving photostability and photocatalytic activity, yet their effect greatly depends on the interaction of the metal complex with the support. Herein, we present a strategy for obtaining Ru-polypyridyl complexes covalently linked to aminated reduced graphene oxide (rGO) to generate novel materials with long-term photostability and increased photoactivity. Specifically, the hybrid Ru(dqp)@rGO system has shown excellent photostable behavior during 24 h of continual irradiation, with an enhancement of 10 and 15% of photocatalytic dye degradation in comparison with [Ru(dqp)2]2+ and Ru(tpy)@rGO, respectively, as well as remarkable recyclability. The presented strategy corroborates the potential of [Ru(dqp)2]2+ as an interesting photoactive molecule to produce more advantageous light-active materials by covalent attachment onto carbon-based supports.
Collapse
Affiliation(s)
- Seán Hennessey
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Roberto González-Gómez
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Kathryn McCarthy
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Christopher S. Burke
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- School
of Chemistry and Analytical and Biological Chemistry Research Facility
(ABCRF), University College Cork, T12 K8AF Cork, Ireland
| | - Camille Le Houérou
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Nirod Kumar Sarangi
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Patrick McArdle
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Fabio Cucinotta
- School
of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Pau Farràs
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| |
Collapse
|
5
|
Das S, Hazra Chowdhury I, Hazra Chowdhury A, Singh N, Sarkar M, Islam SM. Metal-Free Covalent Organic Framework for Facile Production of Solar Fuel via CO 2 Reduction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| | - Ipsita Hazra Chowdhury
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh208016, India
| | - Arpita Hazra Chowdhury
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh208016, India
| | - Netrapal Singh
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal462026, India
| | - Mitali Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| |
Collapse
|
6
|
Natali M, Sartorel A, Ruggi A. Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics. Front Chem 2022; 10:907510. [PMID: 35692692 PMCID: PMC9175021 DOI: 10.3389/fchem.2022.907510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
The political and environmental problems related to the massive use of fossil fuels prompted researchers to develop alternative strategies to obtain green and renewable fuels such as hydrogen. The light-driven water splitting process (i.e., the photochemical decomposition of water into hydrogen and oxygen) is one of the most investigated strategies to achieve this goal. However, the water oxidation reaction still constitutes a formidable challenge because of its kinetic and thermodynamic requirements. Recent research efforts have been focused on the exploration of alternative and more favorable oxidation processes, such as the oxidation of organic substrates, to obtain value-added products in addition to solar fuels. In this mini-review, some of the most intriguing and recent results are presented. In particular, attention is directed on hybrid photoanodes comprising molecular light-absorbing moieties (sensitizers) and catalysts grafted onto either mesoporous semiconductors or conductors. Such systems have been exploited so far for the photoelectrochemical oxidation of alcohols to aldehydes in the presence of suitable co-catalysts. Challenges and future perspectives are also briefly discussed, with special focus on the application of such hybrid molecular-based systems to more challenging reactions, such as the activation of C–H bonds.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Andrea Sartorel
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Fribourg, Switzerland
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| |
Collapse
|
7
|
Niu F, Wang D, Williams LJ, Nayak A, Li F, Chen X, Troian-Gautier L, Huang Q, Liu Y, Brennaman MK, Papanikolas JM, Guo L, Shen S, Meyer TJ. A Semiconductor-Mediator-Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation. Chemistry 2022; 28:e202102630. [PMID: 35113460 DOI: 10.1002/chem.202102630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/09/2022]
Abstract
In fabricating an artificial photosynthesis (AP) electrode for water oxidation, we have devised a semiconductor-mediator-catalyst structure that mimics photosystem II (PSII). It is based on a surface layer of vertically grown nanorods of Fe2 O3 on fluorine doped tin oxide (FTO) electrodes with a carbazole mediator base and a Ru(II) carbene complex on a nanolayer of TiO2 as a water oxidation co-catalyst. The resulting hybrid assembly, FTO|Fe2 O3 |-carbazole|TiO2 |-Ru(carbene), demonstrates an enhanced photoelectrochemical (PEC) water oxidation performance compared to an electrode without the added carbaozle base with an increase in photocurrent density of 2.2-fold at 0.95 V vs. NHE and a negatively shifted onset potential of 500 mV. The enhanced PEC performance is attributable to carbazole mediator accelerated interfacial hole transfer from Fe2 O3 to the Ru(II) carbene co-catalyst, with an improved effective surface area for the water oxidation reaction and reduced charge transfer resistance.
Collapse
Affiliation(s)
- Fujun Niu
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Degao Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States.,Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Lenzi J Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Fei Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Xiangyan Chen
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yanming Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - M Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - John M Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE) State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
8
|
Supported metallic nanoparticles prepared by an organometallic route to boost the electrocatalytic conversion of CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tian Z, Han C, Zhao Y, Dai W, Lian X, Wang Y, Zheng Y, Shi Y, Pan X, Huang Z, Li H, Chen W. Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS 3 nanobelts. Nat Commun 2021; 12:2039. [PMID: 33795681 PMCID: PMC8016833 DOI: 10.1038/s41467-021-22394-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Photocatalytic hydrogen peroxide (H2O2) generation represents a promising approach for artificial photosynthesis. However, the sluggish half-reaction of water oxidation significantly limits the efficiency of H2O2 generation. Here, a benzylamine oxidation with more favorable thermodynamics is employed as the half-reaction to couple with H2O2 generation in water by using defective zirconium trisulfide (ZrS3) nanobelts as a photocatalyst. The ZrS3 nanobelts with disulfide (S22-) and sulfide anion (S2-) vacancies exhibit an excellent photocatalytic performance for H2O2 generation and simultaneous oxidation of benzylamine to benzonitrile with a high selectivity of >99%. More importantly, the S22- and S2- vacancies can be separately introduced into ZrS3 nanobelts in a controlled manner. The S22- vacancies are further revealed to facilitate the separation of photogenerated charge carriers. The S2- vacancies can significantly improve the electron conduction, hole extraction, and kinetics of benzylamine oxidation. As a result, the use of defective ZrS3 nanobelts yields a high production rate of 78.1 ± 1.5 and 32.0 ± 1.2 μmol h-1 for H2O2 and benzonitrile, respectively, under a simulated sunlight irradiation.
Collapse
Affiliation(s)
- Zhangliu Tian
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Cheng Han
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yao Zhao
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Wenrui Dai
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xu Lian
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Yanan Wang
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yue Zheng
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yi Shi
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xuan Pan
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Zhichao Huang
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Hexing Li
- grid.412531.00000 0001 0701 1077International Joint Lab on Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Wei Chen
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| |
Collapse
|
10
|
Puga AV, Barka N, Imizcoz M. Simultaneous H
2
Production and Bleaching via Solar Photoreforming of Model Dye‐polluted Wastewaters on Metal/Titania. ChemCatChem 2020. [DOI: 10.1002/cctc.202001048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alberto V. Puga
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Departament d'Enginyeria Química Universitat Rovira i Virgili Avinguda dels Països Catalans, 26 43007 Tarragona Spain
| | - Noureddine Barka
- Research Group in Environmental Sciences and Applied Materials (SEMA) Sultan Moulay Slimane University FP B.P. 145 25000 Khouribga Morocco
| | - Mikel Imizcoz
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Institute for Advanced Materials and Mathematics (INAMAT2) Universidad Pública de Navarra Edificio Jerónimo de Ayanz Campus de Arrosadia 31006 Pamplona-Iruña Spain
| |
Collapse
|
11
|
Xue D, Xia H, Yan W, Zhang J, Mu S. Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO 2 Reduction. NANO-MICRO LETTERS 2020; 13:5. [PMID: 34138192 PMCID: PMC8187541 DOI: 10.1007/s40820-020-00538-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 05/18/2023]
Abstract
Electrocatalytic carbon dioxide (CO2) reduction (ECR) has become one of the main methods to close the broken carbon cycle and temporarily store renewable energy, but there are still some problems such as poor stability, low activity, and selectivity. While the most promising strategy to improve ECR activity is to develop electrocatalysts with low cost, high activity, and long-term stability. Recently, defective carbon-based nanomaterials have attracted extensive attention due to the unbalanced electron distribution and electronic structural distortion caused by the defects on the carbon materials. Here, the present review mainly summarizes the latest research progress of the construction of the diverse types of defects (intrinsic carbon defects, heteroatom doping defects, metal atomic sites, and edges detects) for carbon materials in ECR, and unveil the structure-activity relationship and its catalytic mechanism. The current challenges and opportunities faced by high-performance carbon materials in ECR are discussed, as well as possible future solutions. It can be believed that this review can provide some inspiration for the future of development of high-performance ECR catalysts.
Collapse
Affiliation(s)
- Dongping Xue
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| |
Collapse
|
12
|
Zhang L, Yue J, Deng Q, Ling W, Zhou CJ, Zeng XX, Zhou C, Wu XW, Wu Y. Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries. RSC Adv 2020; 10:13374-13378. [PMID: 35493023 PMCID: PMC9051378 DOI: 10.1039/d0ra00666a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/07/2020] [Indexed: 11/21/2022] Open
Abstract
Rapid mass transfer and great electrochemical activity have become the critical points for designing electrodes in vanadium redox flow batteries (VRFBs). In this research, we show a porous graphite felt (GF@P) electrode to improve the electrochemical properties of VRFBs. The generation of pores on graphite felt electrodes is based on etching effects of iron to carbon. The voltage and energy efficiencies of VRFB based on the GF@P electrode can reach 72.6% and 70.7% at a current density of 200 mA cm-2, respectively, which are 8.3% and 7.9% better than that of untreated GF@U (graphite felt). Further, the VRFBs based on GF@P electrodes possess supreme stability after over 500 charge-discharge cycles at 200 mA cm-2. The high-efficiency approach reported in this study offers a new strategy for designing high-performance electrode materials applied in VRFBs.
Collapse
Affiliation(s)
- Lei Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology Yueyang Hunan 414006 China .,School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - Junpei Yue
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy ofSciences (CAS) Beijing 100190 China
| | - Qi Deng
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - Wei Ling
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - Chun-Jiao Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - Xian-Xiang Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Xiong-Wei Wu
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China
| | - YuPing Wu
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha Hunan 410128 China .,College of Energy and Institute for Advanced Materials, Nanjing Tech University Nanjing Jiangsu 211816 China
| |
Collapse
|
13
|
Monllor-Satoca D, Díez-García MI, Lana-Villarreal T, Gómez R. Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chem Commun (Camb) 2020; 56:12272-12289. [DOI: 10.1039/d0cc04387g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal oxides keep on being excellent candidates as electrode materials for the photoelectrochemical conversion of solar energy into chemical energy.
Collapse
Affiliation(s)
- Damián Monllor-Satoca
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - María Isabel Díez-García
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Teresa Lana-Villarreal
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Roberto Gómez
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| |
Collapse
|
14
|
Creissen CE, Warnan J, Antón-García D, Farré Y, Odobel F, Reisner E. Inverse Opal CuCrO 2 Photocathodes for H 2 Production Using Organic Dyes and a Molecular Ni Catalyst. ACS Catal 2019; 9:9530-9538. [PMID: 32064143 PMCID: PMC7011728 DOI: 10.1021/acscatal.9b02984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Indexed: 01/08/2023]
Abstract
Dye-sensitized photoelectrochemical (DSPEC) cells are an emerging approach to producing solar fuels. The recent development of delafossite CuCrO2 as a p-type semiconductor has enabled H2 generation through the coassembly of catalyst and dye components. Here, we present a CuCrO2 electrode based on a high-surface-area inverse opal (IO) architecture with benchmark performance in DSPEC H2 generation. Coimmobilization of a phosphonated diketopyrrolopyrrole (DPP-P) or perylene monoimide (PMI-P) dye with a phosphonated molecular Ni catalyst (NiP) demonstrates the ability of IO-CuCrO2 to photogenerate H2. A positive photocurrent onset potential of approximately +0.8 V vs RHE was achieved with these photocathodes. The DPP-P-based photoelectrodes delivered photocurrents of -18 μA cm-2 and generated 160 ± 24 nmol of H2 cm-2, whereas the PMI-P-based photocathodes displayed higher photocurrents of -25 μA cm-2 and produced 215 ± 10 nmol of H2 cm-2 at 0.0 V vs RHE over the course of 2 h under visible light illumination (100 mW cm-2, AM 1.5G, λ > 420 nm, 25 °C). The high performance of the PMI-constructed system is attributed to the well-suited molecular structure and photophysical properties for p-type sensitization. These precious-metal-free photocathodes highlight the benefits of using bespoke IO-CuCrO2 electrodes as well as the important role of the molecular dye structure in DSPEC fuel synthesis.
Collapse
Affiliation(s)
- Charles E. Creissen
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Julien Warnan
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel Antón-García
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Yoann Farré
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Fabrice Odobel
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Erwin Reisner
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
15
|
Chandrasekaran S, Kaeffer N, Cagnon L, Aldakov D, Fize J, Nonglaton G, Baleras F, Mailley P, Artero V. A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions. Chem Sci 2019; 10:4469-4475. [PMID: 31057774 PMCID: PMC6482884 DOI: 10.1039/c8sc05006f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Hybrid systems combining molecular catalysts with inorganic materials is a promising solution towards cheap yet efficient and stable photoelectrochemical hydrogen production.
Hydrogen production through direct sunlight-driven water splitting in photo-electrochemical cells (PECs) is a promising solution for energy sourcing. PECs need to fulfill three criteria: sustainability, cost-effectiveness and stability. Here we report an efficient and stable photocathode platform for H2 evolution based on Earth-abundant elements. A p-type silicon surface was protected by atomic layer deposition (ALD) with a 15 nm TiO2 layer, on top of which a 300 nm mesoporous TiO2 layer was spin-coated. The cobalt diimine–dioxime molecular catalyst was covalently grafted onto TiO2 through phosphonate anchors and an additional 0.2 nm ALD-TiO2 layer was applied for stabilization. This assembly catalyzes water reduction into H2 in phosphate buffer (pH 7) with an onset potential of +0.47 V vs. RHE. The resulting current density is –1.3 ± 0.1 mA cm–2 at 0 V vs. RHE under AM 1.5 solar irradiation, corresponding to a turnover number of 260 per hour of operation and a turnover frequency of 0.071 s–1.
Collapse
Affiliation(s)
- Soundarrajan Chandrasekaran
- Université Grenoble Alpes , CNRS , CEA , Laboratoire de Chimie et Biologie des Métaux , 17 rue des Martyrs , 38000 Grenoble , France . .,Université Grenoble Alpes , CEA-LETI/DTBS , Laboratoire Chimie , Capteurs et Biomatériaux , 17 rue des Martyrs , 38000 Grenoble , France
| | - Nicolas Kaeffer
- Université Grenoble Alpes , CNRS , CEA , Laboratoire de Chimie et Biologie des Métaux , 17 rue des Martyrs , 38000 Grenoble , France .
| | - Laurent Cagnon
- Université Grenoble Alpes , CNRS , Institut NEEL , UPR2940 , 25 rue des Martyrs BP 166 , 38000 Grenoble , France
| | - Dmitry Aldakov
- Université Grenoble Alpes , CNRS , CEA , INAC-SyMMES , 38000 Grenoble , France
| | - Jennifer Fize
- Université Grenoble Alpes , CNRS , CEA , Laboratoire de Chimie et Biologie des Métaux , 17 rue des Martyrs , 38000 Grenoble , France .
| | - Guillaume Nonglaton
- Université Grenoble Alpes , CEA-LETI/DTBS , Laboratoire Chimie , Capteurs et Biomatériaux , 17 rue des Martyrs , 38000 Grenoble , France
| | - François Baleras
- Université Grenoble Alpes , CEA-LETI/DTBS , Laboratoire Chimie , Capteurs et Biomatériaux , 17 rue des Martyrs , 38000 Grenoble , France
| | - Pascal Mailley
- Université Grenoble Alpes , CEA-LETI/DTBS , Laboratoire Chimie , Capteurs et Biomatériaux , 17 rue des Martyrs , 38000 Grenoble , France
| | - Vincent Artero
- Université Grenoble Alpes , CNRS , CEA , Laboratoire de Chimie et Biologie des Métaux , 17 rue des Martyrs , 38000 Grenoble , France .
| |
Collapse
|
16
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Echeverry-Gonzalez CA, Ortiz A, Insuasty B. Rhodanine-based light-harvesting sensitizers: a rational comparison between 2-(1,1-dicyanomethylene)rhodanine and rhodanine-3-acetic acid. NEW J CHEM 2019. [DOI: 10.1039/c9nj00939f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysical, electrochemical and theoretical characterization of new rhodanine-based dyes for DSSC applications, a comparison of the photovoltaic performances of 2-(1,1-dicyanomethylene)rhodanine (DR) and rhodanine-3-acetic acid (RAA).
Collapse
Affiliation(s)
| | - Alejandro Ortiz
- Departamento de Química
- Facultad de Ciencias Naturales y Exactas
- Universidad del Valle, A.A
- 25360 Cali
- Colombia
| | - Braulio Insuasty
- Departamento de Química
- Facultad de Ciencias Naturales y Exactas
- Universidad del Valle, A.A
- 25360 Cali
- Colombia
| |
Collapse
|
18
|
Hennessey S, Farràs P, Benet-Buchholz J, Llobet A. A Bpp-based dinuclear ruthenium photocatalyst for visible light-driven oxidation reactions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01796h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic oxidation of organic substrates in water using a diruthenium chromophore-catalyst dyad molecule can be tuned by the nature of the bridging ligand.
Collapse
Affiliation(s)
- Seán Hennessey
- School of Chemistry
- Energy Research Centre
- Ryan Institute
- National University of Ireland
- H91 CF50 Galway
| | - Pau Farràs
- School of Chemistry
- Energy Research Centre
- Ryan Institute
- National University of Ireland
- H91 CF50 Galway
| | | | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona
- Spain
- Departament de Química
- Universidad Autònoma de Barcelona
| |
Collapse
|
19
|
Ling W, Wang ZA, Ma Q, Deng Q, Tang JF, Deng L, Zhu LH, Wu XW, Yue JP, Guo YG. Phosphorus and oxygen co-doped composite electrode with hierarchical electronic and ionic mixed conducting networks for vanadium redox flow batteries. Chem Commun (Camb) 2019; 55:11515-11518. [DOI: 10.1039/c9cc05355g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The GF-TCN electrodes with excellent electrocatalytic activity and faster electron/ion conduction indicate outstanding rate capability and energy efficiency of VRFBs.
Collapse
Affiliation(s)
- Wei Ling
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Zhi-An Wang
- School of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Qiang Ma
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Qi Deng
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Jian-Feng Tang
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Lei Deng
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Liang-Hong Zhu
- Automotive & Transportation Engineering
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Xiong-Wei Wu
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Jun-Pei Yue
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- China
| |
Collapse
|