1
|
Yadav SK, Jeganmohan M. Co(III)-catalyzed regioselective benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation. Chem Commun (Camb) 2024; 60:8296-8299. [PMID: 39023786 DOI: 10.1039/d4cc01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A Co(III)-catalyzed site-selective C5 and C6 benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation has been reported. The scope of the benzannulation reaction was examined with various substituted 2-pyridyl pyridones and 1,6-diynes. The combination of cuprous acetate and silver carbonate plays a crucial role in the success of the reaction. A plausible reaction mechanism was proposed and supported by deuterium labelling studies and radical trapping experiments.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Keerthana MS, Jeganmohan M. Palladium-catalyzed site-selective functionalization of unactivated alkenes with vinylcyclopropanes aided by weakly coordinating native amides. Chem Commun (Camb) 2024; 60:7347-7350. [PMID: 38916280 DOI: 10.1039/d4cc01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Herein, we have demonstrated a palladium-catalyzed regioselective allylation of unactivated alkenes with vinylcyclopropanes assisted by weak-coordinating native amides. The reaction exhibits wide substrate scope and excellent β-selectivity. Substrate diversification was performed to demonstrate the synthetic utility of the reaction. Mechanistic investigations were carried out to provide an insight into the reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Huang H, Wu YQ, Han LY, Jiang L, Zhang ZZ, Zhang X, Han B, Huang W, Li JL. Palladium-catalyzed ( Z)-selective allylation of phosphine oxides with vinylethylene carbonates to construct phosphorus allyl alcohols. Org Biomol Chem 2024; 22:3068-3072. [PMID: 38546264 DOI: 10.1039/d4ob00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Allylphosphine oxide compounds are important building blocks with broad applications in organic synthesis and pharmaceutical science. Herein, we report an unprecedented palladium-catalyzed allylation of phosphine oxides with vinylethylene carbonates, producing various phosphorus allyl alcohols in excellent yields with high Z-selectivity. In addition, gram-scale synthesis and further functional group transformations demonstrate the practical utility of this synthetic method.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhuo-Zhuo Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Li Z, Shi Z. Late-Stage Diversification of Phosphines by C-H Activation: A Robust Strategy for Ligand Design and Preparation. Acc Chem Res 2024; 57:1057-1072. [PMID: 38488874 DOI: 10.1021/acs.accounts.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
ConspectusThe advent of the twenty-first century marked a golden era in the realm of synthetic chemistry, exemplified by groundbreaking advancements in the field of C-H activation, which is a concept that quickly transitioned from mere academic fascination to an essential element within the synthetic chemist's toolkit. This methodological breakthrough has given rise to a wealth of opportunities spanning a wide range of chemical disciplines. It has facilitated the late-stage diversification of elaborate organic frameworks, encompassing the spectrum from simple methane to complex polymers, thus refining the lead optimization process and easing the production of diverse molecular analogues. Among these strides forward, the development of phosphorus(III)-directed C-H activation stands out as an increasingly significant and inventive approach for the design and synthesis of ligands, substantially redefining the contours of synthetic methodology.Phosphines, renowned for their roles as ligands and organocatalysts, have become fundamentally important in modern organic chemistry. Their efficiency as ligands is significantly affected by coordination with transition metals, which is essential for their involvement in catalytic processes, influencing both the catalytic activity and the selectivity. Historically, the fabrication of phosphines predominantly relied on synthesis employing complex, multistep procedures. Addressing this limitation, our research has delved into ligand design and synthesis through innovative catalytic P(III)-directed C-H activation strategies. In this Account, we have explored a spectrum of procedures, including direct arylation using metal catalysis, and ventured further into domains such as C-H alkylation, alkenylation, aminocarbonylation, alkynylation, borylation, and silylation. These advances have enriched the field by providing efficient methods for the late-stage diversification of biaryl-type monophosphines as well as enabled the C-H activation of triphenylphosphine and its derivatives. Moreover, we have successfully constructed libraries of diverse axially chiral binaphthyl phosphine ligands, showcasing their potency in asymmetric catalysis. Through this Account, we aim to illuminate the exciting possibilities presented by P(III)-directed C-H activation in propelling the boundaries of organic synthesis. By highlighting our pioneering work, we hope to inspire further developments in this promising field of chemistry.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Li Z, Wang M, Yang Y, Liang Y, Chen X, Zhao Y, Houk KN, Shi Z. Atroposelective hydroarylation of biaryl phosphines directed by phosphorus centres. Nat Commun 2023; 14:8509. [PMID: 38129395 PMCID: PMC10739911 DOI: 10.1038/s41467-023-44202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Prized for their ability to generate chemical complexity rapidly, catalytic carbon-hydrogen (C-H) activation and functionalization reactions have enabled a paradigm shift in the standard logic of synthetic chemistry. Directing group strategies have been used extensively in C-H activation reactions to control regio- and enantioselectivity with transition metal catalysts. However, current methods rely heavily on coordination with nitrogen and/or oxygen atoms in molecules and have therefore been found to exhibit limited generality in asymmetric syntheses. Here, we report enantioselective C-H activation with unsaturated hydrocarbons directed by phosphorus centres to rapidly construct libraries of axially chiral phosphines through dynamic kinetic resolution. High reactivity and enantioselectivity are derived from modular assembly of an iridium catalyst with an endogenous phosphorus atom and an exogenous chiral phosphorus ligand, as confirmed by detailed experimental and computational studies. This reaction mode significantly expands the pool of enantiomerically enriched functional phosphines, some of which have shown excellent efficiency for asymmetric catalysis.
Collapse
Affiliation(s)
- Zexian Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhuangzhi Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China.
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Jothi Murugan S, Jeganmohan M. Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. J Org Chem 2023; 88:1578-1589. [PMID: 36680527 DOI: 10.1021/acs.joc.2c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient and straightforward strategy for the synthesis of isoquinolones through [4 + 2]-annulation of N-chlorobenzamides with vinyl acetate in the presence of CoCp*(III) catalyst in a regioselective manner is described. Furthermore, the annulation reaction was diversified by using vinyl ketones. By utilizing this strategy, biologically valuable isoquinolone derivatives were prepared in good yields. Subsequently, isoquinolone derivatives were further transformed into 1-chloroisoquinolines in the presence of POCl3. Furthermore, mechanistic investigations such as deuterium labeling study and competition experiment were performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
7
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Late stage modifications of phosphine oxide ligands by iron‐catalyzed hydrogen borrowing reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Yadav SK, Jeganmohan M. Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Substituted Alkenes. J Org Chem 2022; 87:13073-13088. [PMID: 36163013 DOI: 10.1021/acs.joc.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Co(III)-catalyzed redox-neutral [4 + 2] annulation of N-chlorobenzamides/acrylamides with substituted alkenes at ambient temperature is demonstrated. Using this protocol, pharmaceutically important 3,4-dihydroisoquinolinone derivatives were synthesized in good yields. Intriguingly, the synthetically useful functional group of allylic coupling partners such as sulfonyl, carbonate, acetate, phosphate, amide, nitrile, and silane were retained in the final cyclized product. The present annulation reaction was compatible with various substituted benzamides and allylic coupling partners. To support the proposed reaction mechanism, competition experiments, deuterium labeling studies, and kinetic isotope effect studies were performed.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Yu Z, Liu Q, Yang Y, You J. Ligand-Determined Single, Double, and Triple C–H Arylation of Aryl Phosphines at Will. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
11
|
Deng H, Bengsch M, Tchorz N, Neumann CN. Sterically Controlled Late-Stage Functionalization of Bulky Phosphines. Chemistry 2022; 28:e202202074. [PMID: 35789048 PMCID: PMC9544633 DOI: 10.1002/chem.202202074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Abstract
The fine-tuning of metal-phosphine-catalyzed reactions relies largely on accessing ever more precisely tuned phosphine ligands by de-novo synthesis. Late-stage C-H functionalization and diversification of commercial phosphines offers rapid access to entire libraries of derivatives based on privileged scaffolds. But existing routes, relying on phosphorus-directed transformations, only yield functionalization of Csp 2 -H bonds in a specific position relative to phosphorus. In contrast to phosphorus-directed strategies, herein we disclose an orthogonal functionalization strategy capable of introducing a range of substituents into previously inaccessible positions on arylphosphines. The strongly coordinating phosphine group acts solely as a bystander in the sterically controlled borylation of bulky phosphines, and the resulting borylated phosphines serve as the supporting ligands for palladium during diversification through phosphine self-assisted Suzuki-Miyaura reactions.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Marco Bengsch
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nico Tchorz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Constanze N. Neumann
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
12
|
Rzayev J, Zhang Z, Durand N, Soulé JF. Upgrading Carbazolyl-Derived Phosphine Ligands Using Rh I-Catalyzed P III-Directed C-H Bond Alkylation for Catalytic CO 2-Fixation Reactions. Org Lett 2022; 24:6755-6760. [PMID: 36083787 DOI: 10.1021/acs.orglett.2c02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an Rh(I)-catalyzed C-H bond alkylation of PhenCarPhos [N-(2-(diphenylphosphaneyl)phenyl)carbazole] and some congener phosphine ligands with alkenes. The C-H bond functionalization occurred exclusively at the C1 position of the carbazolyl unit because the trivalent phosphine acts as a directing group. This protocol provides straightforward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunctionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines.
Collapse
Affiliation(s)
- Javid Rzayev
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Natacha Durand
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
13
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
14
|
Wang D, Li M, Shuang C, Liang Y, Zhao Y, Wang M, Shi Z. Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides. Nat Commun 2022; 13:2934. [PMID: 35614077 PMCID: PMC9132997 DOI: 10.1038/s41467-022-30697-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
The widespread use of phosphine ligand libraries is frequently hampered by the challenges associated with their modular preparation. Here, we report a protocol that appends arenes to arylphosphines to access a series of biaryl monophosphines via rhodium-catalyzed P(III)-directed ortho C-H activation, enabling unprecedented one-fold, two-fold, and three-fold direct arylation. Our experimental and theoretical findings reveal a mechanism involving oxidative addition of aryl bromides to the Rh catalyst, further ortho C-H metalation via a four-membered cyclometalated ring. Given the ready availability of substrates, our approach opens the door to developing more general methods for the construction of phosphine ligands.
Collapse
Affiliation(s)
- Dingyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chengdong Shuang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
15
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
16
|
Ramesh B, Jeganmohan M. Ru(II)- or Rh(III)-Catalyzed Annulation of Aromatic/Vinylic Acids with Alkylidenecyclopropanes via C-H Activation. J Org Chem 2022; 87:5668-5681. [PMID: 35414175 DOI: 10.1021/acs.joc.1c03141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient and new route for the synthesis of (E)-4-benzylideneisochroman-1-ones through tandem cascade annulation of benzoic acids with alkylidenecyclopropanes using Ru(II) as a catalyst is demonstrated. It is important to note that the reaction delivers selectively E-stereoselective 4-benzylideneisochroman-1-one derivatives in moderate to good yields, which has completely diverse selectivity as compared with previous methods. Further, the annulation was explored with less-reactive β C-H activation of vinylic acids with alkylidenecyclopropanes, leading to the highly useful α-pyrone derivatives in the presence of an Rh(III) catalyst.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India
| |
Collapse
|
17
|
Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Regio- and Chemoselective [4 + 2]-Annulation of N-Chlorobenzamides/Acrylamides with 1,3-Dienes at Room Temperature. J Org Chem 2022; 87:5713-5729. [PMID: 35414174 DOI: 10.1021/acs.joc.2c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Co(III)-catalyzed regio- and chemoselective redox-neutral C-H annulation of arylamides/acrylamides with 1,3-dienes is described. The present annulation reaction was well suited with a less-reactive 1,3-butadiene. By employing this protocol, pharmaceutically important 3,4-dihydroisoquinolinones were synthesized in good yields. Furthermore, the prepared 3,4-dihydroisoquinolinones were converted into highly important oxirane derivatives in good yields. A plausible mechanistic cycle is proposed and supported by a competition experiment and kinetic isotopic effect (KIE) studies.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
18
|
Yadav SK, Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Chemo- and Regioselective [4 + 2]-Annulation of Aromatic Sulfoxonium Ylides with 1,3-Diynes. J Org Chem 2022; 87:4134-4153. [PMID: 35245072 DOI: 10.1021/acs.joc.1c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Air-stable, highly abundant, and cost-effective Co(III)-catalyzed redox-neutral [4 + 2]-annulation of aromatic sulfoxonium ylides with 1,3-diynes providing useful substituted 1-naphthol derivatives in a regioselective manner is described. Further, the prepared 1-naphthols having internal alkyne were converted into useful polycarbocyclic molecules and spiro-dienone derivatives in good-to-excellent yields. A possible reaction mechanism involving ortho C-H activation as a key step was proposed and supported by deuterium labeling and kinetic isotope labeling studies.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
19
|
|
20
|
Yao Y, Su S, Wu N, Wu W, Jiang H. The cobalt( ii)-catalyzed acyloxylation of picolinamides with bifunctional silver carboxylate via C–H bond activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt(ii)-catalyzed C–H bond acyloxylation of picolinamides with bifunctional silver carboxylate has been developed. The mild and practical esterification provides an atom-economic route to access to polysubstituted naphthalene compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Nan Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Thongpaen J, Manguin R, Kittikool T, Camy A, Roisnel T, Dorcet V, Yotphan S, Canac Y, Mauduit M, Baslé O. Ruthenium–NHC complex-catalyzed P( iii)-directed C–H borylation of arylphosphines. Chem Commun (Camb) 2022; 58:12082-12085. [DOI: 10.1039/d2cc03909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate NHC-based ruthenium catalyst for P(III)-directed ortho C–H borylation of arylphosphines.
Collapse
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Romane Manguin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Tanakorn Kittikool
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Aurèle Camy
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
22
|
Sire C, Cattey H, Tsivery A, Hierso J, Roger J. Phosphorus‐Directed Rhodium‐Catalyzed C−H Arylation of 1‐Pyrenylphosphines Selective at the
K
‐Region. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charline Sire
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Anthonia Tsivery
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Jean‐Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| |
Collapse
|
23
|
Lv J, Zhang XJ, Wang M, Zhao Y, Shi Z. BBr 3 -Mediated P(III)-Directed C-H Borylation of Phosphines. Chemistry 2021; 28:e202104100. [PMID: 34878200 DOI: 10.1002/chem.202104100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Transition-metal-catalyzed C-H borylation has been widely used in the preparation of organoboron compounds. Here, we developed a general protocol on metal-free P(III)-directed C-H borylation of phosphines mediated by BBr3 , resulting in the formation of products bearing both phosphorus and boron. The development of the metal-free strategy to mimic previous metallic processes has shown low cost, superior practicality, and environmental friendliness. Density functional theory (DFT) calculations demonstrate the preferred pathway for this metal-free directed C-H borylation process.
Collapse
Affiliation(s)
- Jiahang Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xue-Jun Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.,Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210093, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
24
|
Wang Y, Zhang Y, Wang L, Han J. Late‐stage Modification of Coumarins via Aryliodonium Intramolecular Aryl Migration. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yuxuan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
- Shanghai – Hong Kong Joint Laboratory in Chemical Synthesis Shanghai Institute of Organic Chemistry The Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
25
|
Li XH, Gong JF, Song MP. Microwave-Assisted Ruthenium- and Rhodium-Catalyzed Couplings of α-Amino Acid Ester-Derived Phosphinamides with Alkynes. Chem Asian J 2021; 17:e202101158. [PMID: 34846096 DOI: 10.1002/asia.202101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Two different types of new phosphinamide α-amino ester derivatives have been prepared in moderate to high yields via ruthenium(II) and rhodium(III)-catalyzed ortho-C-H functionalization under microwave irradiation. Specifically, the ortho-alkenylated phosphinamides were produced through coupling of phosphinamides containing an α-substituted or α,α-disubstituted α-amino ester with internal alkynes under ruthenium catalysis. In contrast, Ru and the more effective Rh-catalyzed coupling of the α-unsubstituted glycine ester phosphinamide with alkynes resulted in formation of oxidative annulation products, phosphaisoquinolin-1-ones. The developed methods feature the use of easily accessible starting materials, short reaction time, exclusive E-stereoselectivity (for ortho-alkenylation) and good functional group tolerance. The alkenylation reaction was readily scaled up to gram scale. Furthermore, the obtained alkenylated phosphinamide could be transformed into P-containing dipeptides through hydrolysis of the ester group in the catalysis product and subsequent condensation with an α-amino ester.
Collapse
Affiliation(s)
- Xue-Hong Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Fang Gong
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
26
|
Komuro T, Asagami J, Higashi H, Sato K, Hashimoto H, Tobita H. Catalysts for Regio- and Stereoselective C(sp3)–H Deuteration of Tricyclohexylphosphine with Benzene-d6 Generated via Dehydrochlorination of Chlorido(dihydrido)iridium Complexes Containing a Xanthene-Based Bis(silyl) Chelate Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Komuro
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Junpei Asagami
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hironori Higashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Keita Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
27
|
Li M, Tao JY, Wang LN, Li JW, Liu YJ, Zeng MH. Construction of Bulky Ligand Libraries by Ru (II)-Catalyzed P (III)-Assisted ortho-C-H Secondary Alkylation. J Org Chem 2021; 86:11915-11925. [PMID: 34423988 DOI: 10.1021/acs.joc.1c01329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of commercially available biaryl monophosphine ligands via ruthenium(II)-catalyzed P(III)-directed-catalyzed ortho C-H secondary alkylation is described. The use of highly ring-strained norbornene as a secondary alkylating reagent is the key to this transformation. A series of highly bulky ligands with a norbornyl group were obtained in excellent yields. The modified ligands with secondary alkyl group outperformed common substituted phosphines in the Suzuki-Miyaura cross-coupling reaction at a ppm mole level of Pd catalyst.
Collapse
Affiliation(s)
- Ming Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jun-Yang Tao
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Liang-Neng Wang
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia-Wei Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue-Jin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ming-Hua Zeng
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Department of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
28
|
Singh P, Kumar Chouhan K, Mukherjee A. Ruthenium Catalyzed Intramolecular C-X (X=C, N, O, S) Bond Formation via C-H Functionalization: An Overview. Chem Asian J 2021; 16:2392-2412. [PMID: 34251077 DOI: 10.1002/asia.202100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Indexed: 01/12/2023]
Abstract
Ruthenium catalyzed C-H activation is well known for its high tolerance towards the functional group and broad applicability in organic synthesis and molecular sciences, with significant applications in pharmaceutical industries, material sciences, and polymer industry. In the last few decades, enormous progress has been observed with ruthenium-catalyzed C-H activation chemistry. Notably, the vast majority of the C-H functionalization known in the literature are intermolecular, although the intramolecular variant provides fascinating new structural facet starting from the simple molecular scaffolds. Intramolecular C-H functionalization is atom economical and step efficient, results in less formation of undesired products which is easy to purify. This has created a lot of interest in organic chemistry in developing new synthetic strategies for such functionalization. The focus of this review is to present the relatively unexplored intramolecular functionalization of C-H bonds into C-X (X=C, N, O, S) bonds utilizing versatile ruthenium catalysts, their scope, and brief mechanistic discussion.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Kishor Kumar Chouhan
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| |
Collapse
|
29
|
Doherty S, Knight JG, Tran TST, Alharbi HY, Perry DO. The Synthesis of Biarylmonophosphonates via Palladium-Catalyzed Phosphonation, Iridium-Catalyzed C-H Borylation, Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling. Catal Letters 2021. [DOI: 10.1007/s10562-021-03643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The iridium-catalyzed C-H borylation of diethyl phenylphosphonate results in nonselective mono and bisborylation to afford a near statistical mixture of 3-, 3,5- and 4-boryl substituted aryl phosphonates whereas 3-substituted aryl phosphonates undergo highly regioselective C-H borylation to afford the corresponding meta-phosphonate substituted arylboronic esters as the sole product; the resulting boronic esters were used as nucleophilic reagents in a subsequent palladium-catalyzed Suzuki–Miyaura cross-coupling to generate a range of biarylmonophosphonates. Gratifyingly, the Suzuki–Miyaura cross-coupling can be conducted without purifying the boronic ester which greatly simplifies the synthetic procedure.
Graphical Abstract
Collapse
|
30
|
Zhang N, Ma W, Li J, Liu Y, Zeng M. Solvent‐Free Ruthenium‐Catalyzed Direct Coupling of Phosphines and Aryl Chlorides via C−H Activation: An Efficient and Straight Access to Aryl‐Substituted Biarylphosphines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ni‐Juan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Wen‐Tao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 541004 Guilin P. R. China
| |
Collapse
|
31
|
Wang L, Tang P, Li M, Li J, Liu Y, Zeng M. Double Ligands Enabled Ruthenium Catalyzed
ortho
‐C−H Arylation of Dialkyl Biarylphosphines: Straight and Economic Synthesis of Highly Steric and Electron‐Rich Aryl‐Substituted Buchwald‐Type Phosphines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liang‐Neng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Pan‐Ting Tang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
32
|
Ramesh B, Jeganmohan M. Cobalt(iii)-catalyzed redox-neutral [4+2]-annulation of N-chlorobenzamides/acrylamides with alkylidenecyclopropanes at room temperature. Chem Commun (Camb) 2021; 57:3692-3695. [PMID: 33725082 DOI: 10.1039/d1cc00654a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient synthesis of substituted 3,4-dihydroisoquinolinones through [4+2]-annulation of N-chlorobenzamides/acrylamides having a monodentate directing group with alkylidenecyclopropanes in the presence of a less expensive, highly abundant and air stable Co(iii) catalyst via a C-H activation is demonstrated. In this reaction, the N-Cl bond of N-chlorobenzamide serves as an internal oxidant and thus an external metal oxidant is avoided. The 3,4-dihydroisoquinolinone derivatives are converted successfully into the highly useful imidoyl chloride derivatives. The deuterium labeling and kinetic isolabelling studies reveal that the C-H activation is a rate-determining step in this cyclization reaction.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
33
|
Affiliation(s)
- Marin R. Auth
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| | - Kathryn A. McGarry
- Department of Chemistry University of Wisconsin-Stevens Point Stevens Point WI 54481 USA
| | - Timothy B. Clark
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| |
Collapse
|
34
|
Zhou ZX, Li JW, Wang LN, Li M, Liu YJ, Zeng MH. Cooperative Ligand-Promoted P (III)-Directed Ruthenium-Catalyzed Remote Meta-C-H Alkylation of Tertiary Phosphines. Org Lett 2021; 23:2057-2062. [PMID: 33630602 DOI: 10.1021/acs.orglett.1c00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we disclose a ruthenium-catalyzed meta-selective C-H activation of phosphines by using intrinsic P(III) as a directing group. 2,2,6,6-Tetramethylheptane-3,5-dione acts as the ligand and exhibits an excellent performance in boosting the meta-alkylation. The protocol allows an efficient and straightforward synthesis of meta-alkylated tertiary phosphines. Several meta-alkylated phosphines were evaluated for Pd-catalyzed Suzuki coupling and found to be superior to commercially available ortho-substituted phosphines. The practicability of this methodology is further demonstrated by the synthesis of difunctionalized phosphines.
Collapse
Affiliation(s)
- Zheng-Xin Zhou
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Jia-Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Liang-Neng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| |
Collapse
|
35
|
Pipaliya BV, Seth K, Chakraborti AK. Ruthenium (II) Catalyzed C(sp 2 )-H Bond Alkenylation of 2-Arylbenzo[d]oxazole and 2-Arylbenzo[d]thiazole with Unactivated Olefins. Chem Asian J 2021; 16:87-96. [PMID: 33230945 DOI: 10.1002/asia.202001304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 01/10/2023]
Abstract
Functionalization of the bio-relevant heterocycles 2-arylbenzo[d]oxazole and 2-arylbenzo[d]thiazole has been achieved through Ru(II)-catalyzed alkenylation with unactivated olefins leading to selective formation of the mono-alkenylated products. This approach has a broad substrate scope with respect to the coupling partners, affords high yields, and works for gram scale synthesis using a readily available Ru-based catalyst. Mechanistic studies reveal a C-H activation pathway for the dehydrogenative coupling leading to the alkenylation. However, the results of the ESI-MS-guided deuterium kinetic isotope effect studies indicate that the C-H activation stage may not be the rate-determining step of the reaction. The use of a radical scavenging agent such as TEMPO did not show any detrimental effect on the reaction outcome, eliminating the possibility of the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Bhavin V Pipaliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India.,Department of Chemistry, S. S. Bhatnagar Building, Main Campus, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
36
|
Abstract
Metal-catalyzed activations of inert sp3C–H bonds have recently brought a revolution in the synthesis of useful molecules and molecular materials, due to the interest of the formed sp3C–SiR3 silanes, stable organometallic species, and for further functionalizations that sp3C–H bonds cannot reach directly.
Collapse
Affiliation(s)
- Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Pierre H. Dixneuf
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
37
|
Niu Y, Qi Z, Lou Q, Bai P, Yang S. Copper-catalyzed arylation of polycyclic aromatic hydrocarbons by the P[double bond, length as m-dash]O group. Chem Commun (Camb) 2020; 56:14721-14724. [PMID: 33174877 DOI: 10.1039/d0cc06639g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a directed and regioselective arylation of polycyclic aromatic hydrocarbons (PAHs) by using a P[double bond, length as m-dash]O directing group is reported herein. The protocol uses a cheap copper catalyst, and results in a breakthrough meta-selective C-H functionalization of arylphosphine oxide compounds. Substrates with potential fluorescence properties, for example, pyrene and fluoranthene, were successfully arylated under the system, thus achieving an efficient modification of fluorescent molecules containing the P[double bond, length as m-dash]O functional group.
Collapse
Affiliation(s)
- Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Dong B, Qian J, Li M, Wang ZJ, Wang M, Wang D, Yuan C, Han Y, Zhao Y, Shi Z. External oxidant-compatible phosphorus(III)-directed site-selective C-H carbonylation. SCIENCE ADVANCES 2020; 6:6/51/eabd1378. [PMID: 33328235 PMCID: PMC7744084 DOI: 10.1126/sciadv.abd1378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The first development of an external oxidant-compatible system involving a phosphorus(III)-directed C-H functionalization has been uncovered. An efficient C-H esterification of indoles with CO and alcohols has been reported in which the high reactivity and the exclusive C7-selectivity derives from the selection of a P(III)-directing group and the utilization of benzoquinone as an external oxidant with palladium catalysis. This strategy shows many advantages, involving an easily accessible and removable directing group, the use of cheap carbonylation sources, a broad substrate scope, and excellent positional selectivity. Two cyclopalladated intermediates were confirmed by x-ray analysis, uncovering key mechanistic features of this P(III)-directed C-H metalation event.
Collapse
Affiliation(s)
- Ben Dong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Jiasheng Qian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Dingyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Chengkai Yuan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Ying Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China).
| |
Collapse
|
39
|
Lima YR, Da Costa GP, Xavier MCDF, De Moraes MC, Barcellos T, Alves D, Silva MS. Synthesis of
α
‐Hydroxyphosphonates Containing Functionalized 1,2,3‐Triazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanka R. Lima
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Gabriel P. Da Costa
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Maurício C. D. F. Xavier
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Maiara C. De Moraes
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul - UCS Caxias do Sul RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul - UCS Caxias do Sul RS Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| |
Collapse
|
40
|
Zhang Z, Cordier M, Dixneuf PH, Soulé JF. Late-Stage Diversification of Biarylphosphines through Rhodium(I)-Catalyzed C–H Bond Alkenylation with Internal Alkynes. Org Lett 2020; 22:5936-5940. [DOI: 10.1021/acs.orglett.0c02023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | | | |
Collapse
|
41
|
Xue Q, Huo S, Wang T, Wang Z, Li J, Zhu M, Zuo W. Diastereoselective Synthesis of P‐Chirogenic and Atropisomeric 2,2′‐Bisphosphino‐1,1′‐binaphthyls Enabled by Internal Phosphine Oxide Directing Groups. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingquan Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Shangfei Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Tingyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Zeming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationKey Laboratory of Physico-Inorganic ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
42
|
Xue Q, Huo S, Wang T, Wang Z, Li J, Zhu M, Zuo W. Diastereoselective Synthesis of P-Chirogenic and Atropisomeric 2,2'-Bisphosphino-1,1'-binaphthyls Enabled by Internal Phosphine Oxide Directing Groups. Angew Chem Int Ed Engl 2020; 59:8153-8159. [PMID: 32196883 DOI: 10.1002/anie.202001561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 11/08/2022]
Abstract
Diphosphine ligands that merge both axial and P-centered chirality may exhibit superior or unique properties. Herein we report the diastereoselective introduction of P-centered chirality at the 2-position of the axially chiral 2'-(phosphine oxide)-1,1'-binaphthyl scaffold. A lithium-bromide exchange reaction of a 2-bromo-2'-(phosphine oxide)-1,1'-binaphthyl and treatment with dichlorophosphines followed by a nucleophilic organometallic reagent afforded unsymmetrical 2-phosphino-2'-(phosphine oxide)-1,1'-binaphthyls with binaphthyl axial chirality and one or two phosphorus stereocenters with a variety of P substituents. The final diastereomerically pure 2,2'-bisphosphino-1,1'-binaphthyls were obtained by reduction of the phosphine oxide directing group. Preliminary results demonstrated that a ligand with this hybrid chirality could induce higher stereoselectivity in the metal-complex-catalyzed asymmetric hydrogenation of a dialkyl ketone.
Collapse
Affiliation(s)
- Qingquan Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shangfei Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tingyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zeming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
43
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020; 59:10909-10912. [DOI: 10.1002/anie.202003865] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
44
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
45
|
Liu Y, Xia Y, Shi B. Ni‐Catalyzed Chelation‐Assisted
Direct Functionalization of Inert C—H Bonds. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900468] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan‐Hua Liu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Yu‐Nong Xia
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
46
|
Thongpaen J, Manguin R, Baslé O. Chiral N‐Heterocyclic Carbene Ligands Enable Asymmetric C−H Bond Functionalization. Angew Chem Int Ed Engl 2020; 59:10242-10251. [DOI: 10.1002/anie.201911898] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR—UMR 6226 F-35000 Rennes France
| | - Romane Manguin
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR—UMR 6226 F-35000 Rennes France
| | - Olivier Baslé
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
| |
Collapse
|
47
|
Thongpaen J, Manguin R, Baslé O. Chiral N‐Heterocyclic Carbene Ligands Enable Asymmetric C−H Bond Functionalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR—UMR 6226 F-35000 Rennes France
| | - Romane Manguin
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR—UMR 6226 F-35000 Rennes France
| | - Olivier Baslé
- LCC-CNRS Université de Toulouse, CNRS Toulouse France
| |
Collapse
|
48
|
Zhang Z, Zhang X, Yuan J, Yue C, Meng S, Chen J, Yu G, Che C. Transition‐Metal‐Catalyzed Regioselective Functionalization of Monophosphino‐
o‐
Carboranes. Chemistry 2020; 26:5037-5050. [DOI: 10.1002/chem.201905647] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Zi‐Yang Zhang
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xuepeng Zhang
- Laboratory of Computational and Drug DesignSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Jia Yuan
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Chang‐Duo Yue
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Guang‐Ao Yu
- Department Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationChemical Biology CenterCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry andDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen, Guangdong 518057 P. R. China
| |
Collapse
|
49
|
Zhang JS, Chen T, Han LB. Palladium-Catalyzed Direct Decarbonylative Phosphorylation of Benzoic Acids with P(O)-H Compounds. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ji-Shu Zhang
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan China
| | - Tieqiao Chen
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources; College of Chemical Engineering and Technology; Hainan University; 570228 Haikou Hainan China
| | - Li-Biao Han
- Institute of Drug Discovery Technology; College of Chemical Engineering and Technology; Ningbo University; 450052 Ningbo Zhejiang China
- College of Chemical Engineering and Technology; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba 305-8565 Ibaraki Japan
| |
Collapse
|
50
|
Li JW, Wang LN, Li M, Tang PT, Zhang NJ, Li T, Luo XP, Kurmoo M, Liu YJ, Zeng MH. Late-Stage Modification of Tertiary Phosphines via Ruthenium(II)-Catalyzed C–H Alkylation. Org Lett 2020; 22:1331-1335. [DOI: 10.1021/acs.orglett.9b04590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jia-Wei Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Liang-Neng Wang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Pan-Ting Tang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ni-Juan Zhang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tian Li
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Xiao-Peng Luo
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|