1
|
Lu Z, Zhang H, Huang J, Zhong Y, Wang M, Zhang L, Wang D. Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosens Bioelectron 2022; 202:114013. [DOI: 10.1016/j.bios.2022.114013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
|
2
|
Yu Z, Lu Z, Huang J, Zhang J, Huang Y, Wang W, Chen Y, Liu K, Wang D. Surface Functional Nanofiber Membrane for Ultrasensitive and Naked-Eye Visualization of Bacterial Concentration. ACS APPLIED BIO MATERIALS 2020; 3:6466-6477. [PMID: 35021778 DOI: 10.1021/acsabm.0c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial contamination in water is a serious health risk to human beings, so it is very important to realize the point-of-care (POC) bacterial detection in water. However, the traditional bacterial detection methods are time-consuming, professional- and equipment-dependent, and do not meet the needs of POC detection. There is a pressing need to develop a platform for POC bacterial detection to defeat the increasing risk of bacterial infections. Herein, a surface functional nanofiber membrane (NFM) is prepared by layer-by-layer (LBL) self-assembly as a platform for POC detection of bacterial concentration; it is naked-eye visualization and ultrasensitive. The platform shows obvious bacterial responsiveness, which allows naked-eye visualization of bacterial concentration (102-106 CFU/mL) within 30 min and can quantitatively detect the bacterial concentration (101-106 CFU/mL) by fluorescence within 5 min. The platform not only exhibits high efficiency but also has a low threshold for bacterial concentration detection. Furthermore, the platform shows good consistency with traditional methods in the detection of bacteria in practical water samples, and has the potential for use in detecting bacterial concentrations in water supplies to protect human beings from health hazards. This work also provides useful reference for research on bacterial detection, taking advantage of the surface characteristics of bacteria and the high sensitivity of NFM.
Collapse
Affiliation(s)
- Zhenguo Yu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jiangxi Huang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jiaqi Zhang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yu Huang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ke Liu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.,National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|