1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Jiao X, Wang Y, Zhang J, Wang X. Combination of two-photon fluorescent probes for carboxylesterase and ONOO - to visualize the transformation of nonalcoholic fatty liver to nonalcoholic steatohepatitis in liver orthotopic imaging. Talanta 2024; 270:125521. [PMID: 38091750 DOI: 10.1016/j.talanta.2023.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
As the most common cause of liver diseases, nonalcoholic fatty liver disease (NAFLD) can be classified into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). While NAFL is generally benign, the transition from NAFL to NASH is a cardinal feature of the non-benign liver disease that leads to cirrhosis and cancer, which indicates that tracking the transformation of NAFL to NASH timely is significant for precision management of liver diseases. Therefore, two fluorescent probes (CNFCl and DRNO) have been developed to visualize this pathological event. α-Fluorochloroacetamide and α-ketoamide was employed as the recognition site for carboxylesterase (CE) in CNFCl and peroxynitrite (ONOO-) in DRNO, respectively. CNFCl (λem = 445 nm) and DRNO (λem = 560 nm) showed high specificity and sensitivity towards CE and ONOO- respectively. By incubating with CE/ONOO- for 0.5 h respectively, both the emission intensity of CNFCl (linear range: 0-0.2 U/mL) and DRNO (linear range: 0-17.5 μM) displayed significant enhancement. As a result, the detection limit of CNFCl and DRNO for CE and ONOO- was calculated as 4.2 mU/L and 0.05 μM respectively. More importantly, the emission spectra of CNFCl and DRNO in the presence of CE and ONOO- respectively were cross-talk free under the two-photon excitation of 720 nm. This greatly facilitated the simultaneous detection of CE and ONOO- at distinctive channel, thus ensuring the high fidelity of the detection. These two probes were combined to image the fluctuation of CE and ONOO- during the conversion of NAFL to NASH in vitro and in vivo. It was found that while CE displayed a tendency to rise and then reduce during the transition from NAFL to NASH, ONOO- increased continuously, confirming that the combined imaging by CNFCl and DRNO might visualize the transformation of NAFL to NASH. The results provide robust visual tool to decipher the relationship between the stage of NAFLD and the level of CE/ONOO-. We anticipate this study may open new avenues to distinguish NASH from NAFL, which may further promote the study of intracellular biological activities of CE and the development of NAFLD diagnostic methods.
Collapse
Affiliation(s)
- Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Yucheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
3
|
Hua L, Zhang KY, Liu HW, Chan KS, Lo KKW. Luminescent iridium(III) porphyrin complexes as near-infrared-emissive biological probes. Dalton Trans 2023; 52:12444-12453. [PMID: 37594412 DOI: 10.1039/d3dt02104a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report herein the design, synthesis and characterisation of a series of luminescent iridium(III) porphyrin complexes [Ir(ttp)(CH2CH2OH)] (H2ttp = 5,10,15,20-tetra-4-tolylporphyrin) (1), [Ir(tpp-Ph-NO2)(CO)Cl] (H2tpp-Ph-NO2 = 5-(4-((4-nitrophenoxy)carbonyloxymethyl)phenyl)-10,15,20-triphenylporphyrin) (2), [Ir(tpp-COOMe)(Py)2](Cl) (H2tpp-COOMe = 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin; Py = pyridine) (3) and [Ir(tpp-COOH)(Py)2](Cl) (H2tpp-COOH = 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin) (4). All the complexes displayed long-lived near-infrared (NIR) emission attributed to an excited state of mixed triplet intraligand (3IL) (π → π*) (porphyrin) and triplet metal-to-ligand charge transfer (3MLCT) (dπ(Ir) → π*(porphyrin)) character. The cytotoxicity of the complexes toward HeLa cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cationic complexes 3 and 4 exhibited higher cytotoxic activity toward HeLa cells than their neutral counterparts 1 and 2. Cellular uptake studies by inductively coupled plasma-mass spectrometry (ICP-MS) and laser-scanning confocal microscopy (LSCM) indicated that complexes 3 and 4 showed higher cellular uptake efficiencies than complexes 1 and 2 due to their cationic charge, and they were enriched in the perinuclear region of the cells with negligible nuclear uptake. Additionally, the carboxyl complex 4 was used to label a model protein bovine serum albumin (BSA) via an amidation reaction. The resultant luminescent protein conjugate 4-BSA displayed similar photophysical properties and intracellular localisation behaviour to its parent complex. The results of this work will contribute to the development of luminescent iridium(III) porphyrin complexes and related bioconjugates as NIR-emissive probes for bioimaging applications.
Collapse
Affiliation(s)
- Lijuan Hua
- Department of Chemistry, Bengbu Medical College, Donghai Avenue, Bengbu, Anhui, 233030, P. R. China.
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Yin Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kin-Shing Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
4
|
Rashid A, Mondal S, Ghosh P. Iridium(III) complex of fluorinated cyclometalating ligands and imidazolium-bipyridine as an effective lifetime based phosphates sensor. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
6
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
7
|
Rashid A, Mondal S, Mondal S, Ghosh P. A bis‐heteroleptic imidazolium‐bipyridine functionalized iridium(III) complex for fluorescence lifetime‐based recognition and sensing of phosphates. Chem Asian J 2022; 17:e202200393. [DOI: 10.1002/asia.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ambreen Rashid
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Sahidul Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Subal Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Pradyut - Ghosh
- Indian Association for the Cultivation of Science School of Chemical Sciences 2A & 2B Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
8
|
Anjong TF, Choi H, Yoo J, Bak Y, Cho Y, Kim D, Lee S, Lee K, Kim BG, Kim S. Multifunction-Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200245. [PMID: 35315219 DOI: 10.1002/smll.202200245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high-contrast "off-to-on" activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components-incorporated afterglow nanosensor (MANS) is developed for the superoxide-responsive activatable afterglow imaging of cisplatin-induced kidney injury. A multifunctional iridium complex (Ir-OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen-generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir-OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir-OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide-responsive "off-to-on" activatable afterglow luminescence for periods longer than 11 min after the termination of pre-excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin-induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
Collapse
Affiliation(s)
- Tikum Florence Anjong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jounghyun Yoo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yecheol Bak
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuri Cho
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dojin Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Zhang Y, Qiao J. Near-infrared emitting iridium complexes: Molecular design, photophysical properties, and related applications. iScience 2021; 24:102858. [PMID: 34381981 PMCID: PMC8340135 DOI: 10.1016/j.isci.2021.102858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Organic light-emitting diodes (OLEDs) have become popular displays from small screens of wearables to large screens of televisions. In those active-matrix OLED displays, phosphorescent iridium(III) complexes serve as the indispensable green and red emitters because of their high luminous efficiency, excellent color tunability, and high durability. However, in contrast to their brilliant success in the visible region, iridium complexes are still underperforming in the near-infrared (NIR) region, particular in poor luminous efficiency according to the energy gap law. In this review, we first recall the basic theory of phosphorescent iridium complexes and explore their full potential for NIR emission. Next, the recent advances in NIR-emitting iridium complexes are summarized by highlighting design strategies and the structure-properties relationship. Some important implications for controlling photophysical properties are revealed. Moreover, as promising applications, NIR-OLEDs and bio-imaging based on NIR Ir(III) complexes are also presented. Finally, challenges and opportunities for NIR-emitting iridium complexes are envisioned.
Collapse
Affiliation(s)
- Yanxin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Shi H, Wang Y, Lin S, Lou J, Zhang Q. Recent development and application of cyclometalated iridium(III) complexes as chemical and biological probes. Dalton Trans 2021; 50:6410-6417. [PMID: 33900334 DOI: 10.1039/d1dt00592h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium complexes have been widely applied as molecular sensors because of their rich photophysical properties, including large Stokes shifts, long emission lifetimes, environment-sensitive emissions, and high luminescence quantum yields. In this paper, we review the recent development and application of iridium complexes as probes for ions, anions, gaseous species, organic molecules, small biomolecules, biomacromolecules, and subcellular organelles. Our outlook for iridium-based probes is also discussed.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
12
|
Yan Z, Xue J, Zhou M, Wang J, Zhang Y, Wang Y, Qiao J, He Y, Li P, Zhang S, Zhang X. Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Anal Chem 2021; 93:2988-2995. [PMID: 33512148 DOI: 10.1021/acs.analchem.0c05011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The formation of biomolecular condensates is driven by liquid-liquid phase separation, which is prevalent in cells to govern crucial cellular functions. However, understanding the properties of phase-separated condensates remains very challenging for the lack of suitable techniques. Here, we report a photoluminescence lifetime imaging method for real-time monitoring of phase-separated condensates, both in vitro and in living cells, using a microsecond-scale photoluminescence lifetime probe based on iridium complex. The probe has a large Stokes shift, excellent cell permeability, and minimal cell autofluorescence interference. With this method, the dynamic process of phase separation of fused in sarcoma protein has been well explored, showing high spatiotemporal resolution and high throughput. Beginning with initial formation, the protein droplets get bigger and more viscous, and then a final maturation to solidified aggregates has been characterized. This study paves the path for a deeper understanding of the properties of phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Zihe Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianfeng Xue
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Zhou
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanxin Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Mahapatra M, Dutta A, Mitra M, Karmakar M, Ghosh NN, Chattopadhyay PK, Singha NR. Intrinsically Fluorescent Biocompatible Terpolymers for Detection and Removal of Bi(III) and Cell Imaging. ACS APPLIED BIO MATERIALS 2020; 3:6155-6166. [DOI: 10.1021/acsabm.0c00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur 732103, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
15
|
Mahapatra M, Dutta A, Roy JSD, Deb M, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Synthesis of Biocompatible Aliphatic Terpolymers via In Situ Fluorescent Monomers for Three-in-One Applications: Polymerization of Hydrophobic Monomers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6178-6187. [PMID: 32418427 DOI: 10.1021/acs.langmuir.0c00636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biocompatible, nonconventional, multifunctional, purely aliphatic, light-emitting terpolymers, i.e., acrylonitrile-co-3-(N-isopropylacrylamido)propanenitrile-co-N-isopropylacrylamide (AN-co-NIPAMPN-co-NIPA, 1) and acrylonitrile-co-3-(N-hydroxymethylacrylamido)propanenitrile-co-N-hydroxymethylacrylamide (AN-co-NHMAMPN-co-NHMA, 2), were designed and synthesized via N-H-functionalized C-C + N-C-coupled in situ protrusions/grafting of fluorophore monomers, i.e., NIPAMPN and NHMAMPN, by solution polymerization of two highly hydrophobic nonemissive monomers in water. These scalable and reusable 1 and 2 were suitable for high-performance three-in-one applications, such as Fe(III) sensors, imaging of Madin-Darby canine kidney (MDCK) and human lung cancer (A549) cells, and security inks. The structures of 1 and 2, N-C-coupled in situ attachments/grafting of third fluorophore monomers, grafting events, and aggregation-enhanced emissions (AEEs), were analyzed by 1H and 13C NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric (TG) analysis, high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, and absorption/emission properties of 1 and 2 at optimized compositions were examined by density functional theory (DFT), time-dependent DFT (TDDFT), and natural transition orbital (NTO) analyses. The limits of detection were 3.20 × 10-7 and 1.37 × 10-7 M for 1 and 2, respectively. The excellent biocompatibility of 1 and 2 was confirmed by >95% retention of MDCK and A549 cell morphologies.
Collapse
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Ujjal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
16
|
Lan L, Ren X, Yang J, Liu D, Zhang C. Detection techniques of carboxylesterase activity: An update review. Bioorg Chem 2020; 94:103388. [DOI: 10.1016/j.bioorg.2019.103388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
17
|
Wang Y, Yu F, Luo X, Li M, Zhao L, Yu F. Visualization of carboxylesterase 2 with a near-infrared two-photon fluorescent probe and potential evaluation of its anticancer drug effects in an orthotopic colon carcinoma mice model. Chem Commun (Camb) 2020; 56:4412-4415. [DOI: 10.1039/d0cc00297f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have established a near-infrared two-photon fluorescent probe for the detection of CE2 with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yan Wang
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Feifei Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma
- Ministry of Education, College of Pharmacy
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine, College of Emergency and Trauma
- Hainan Medical University
| | - Xianzhu Luo
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Mingshun Li
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Linlu Zhao
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma
- Ministry of Education, College of Pharmacy
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine, College of Emergency and Trauma
- Hainan Medical University
| | - Fabiao Yu
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
18
|
Chen C, Geng F, Wang Y, Yu H, Li L, Yang S, Liu J, Huang W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta 2019; 205:120132. [DOI: 10.1016/j.talanta.2019.120132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
19
|
Tian X, Yan F, Zheng J, Cui X, Feng L, Li S, Jin L, James TD, Ma X. Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury. Anal Chem 2019; 91:15840-15845. [PMID: 31713417 DOI: 10.1021/acs.analchem.9b04189] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.
Collapse
Affiliation(s)
- Xiangge Tian
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Fei Yan
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| | - Jingyuan Zheng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Xiaolin Cui
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lei Feng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Sheng Li
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lingling Jin
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Xiaochi Ma
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| |
Collapse
|
20
|
Ke L, Zhang C, Liao X, Qiu K, Rees TW, Chen Y, Zhao Z, Ji L, Chao H. Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy. Chem Commun (Camb) 2019; 55:10273-10276. [DOI: 10.1039/c9cc05610f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gold nanorods with surfaces modified by iridium(iii)-azo complexes (Ir@AuNRs) were developed as mitochondria-targeted bifunctional therapeutic agents for hypoxia-imaging and photothermal therapy.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Cheng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zizhuo Zhao
- Department of Ultrasound
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|