1
|
Kobayashi F, Yoshida A, Gemba M, Takatsu Y, Tadokoro M. Solvent vapour-responsive structural transformations in molecular crystals composed of a luminescent mononuclear aluminium(III) complex. Dalton Trans 2024; 53:11689-11696. [PMID: 38847374 DOI: 10.1039/d4dt00747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Investigations into the construction of functional molecular crystals and their external stimuli-induced structural transformations represent compelling research topics, particularly for the advancement of sensors and memory devices. However, reports on the development of molecular crystals constructed from discrete mononuclear complex units and exhibiting structural transformations via the adsorption/desorption of guest molecules are scarce. In this study, we synthesised three molecular crystals composed of [Al(sap)(acac)(H2O)]·(solvent) (H2sap = 2-salicylideneaminophenol, acac = acetylacetonate, solvent = Me2CO (Al·Me2CO), MeCN (Al·MeCN), or DMSO (Al·DMSO)), and demonstrated solvent vapour-responsive reversible crystal-to-crystal structural transformations in Al·Me2CO and Al·MeCN. For Al·DMSO, exposure to DMSO vapour led to the formation of DMSO-coordinated compound [Al(sap)(acac)(DMSO)], indicating an irreversible structural transformation. This solvent vapour-responsive system incorporates a luminescent mononuclear aluminium(III) complex (λmax = 539-552 nm, Φem = 0.07-0.27) as the molecular building unit for the porous-like framework. Therefore, we synthesised a new functional molecular material and a potential molecular building unit that facilitates guest fixation through hydrogen-bonding.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Azuki Yoshida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Misato Gemba
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuta Takatsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Tadokoro
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Li K, Rajeshkumar T, Zhao Y, Wang T, Maron L, Zhu C. Temperature induced single-crystal to single-crystal transformation of uranium azide complexes. Chem Commun (Camb) 2024; 60:2966-2969. [PMID: 38376444 DOI: 10.1039/d4cc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(μ-N)2} (4).
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Lefeuvre B, Guizouarn T, Dorcet V, Cordier M, Pointillart F. Single-Molecule Magnet Properties in 3 d4 f Heterobimetallic Iron and Dysprosium Complexes Involving Hydrazone Ligand. Molecules 2023; 28:6359. [PMID: 37687187 PMCID: PMC10489976 DOI: 10.3390/molecules28176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The reaction between the ((E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide) (H2opch) ligand and the metallo-precursor [Dy(hfac)3]·2H2O led to the formation of an homometallic coordination complex with the formula [Dy2(hfac)3(H2O)(Hopch)2][Dy(hfac)4] (1). In presence of both [Dy(hfac)3] 2H2O and the Fe(II) salt, the heterobimetallic tetranuclear [FeDy3(hfac)8(H2O)2(opch)2] (2) was isolated, while the addition of the co-ligand 1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine (H2bmh) led to the formation of two heterobimetallic tetranuclear complexes with the formula [Fe3Dy(hfac)6(opch)2(H2bmh)] C6H14 (3) C6H14 and [Fe2Dy2(hfac)7(opch)2(H2bmh)] 0.5C7H16 (4) 0.5C7H16. Single crystal X-ray diffraction and dc magnetic investigation demonstrated that 3 and 4 involved the iron center in the +II and +III oxidation states. Dynamic magnetic measurements highlighted the single-molecule magnet behavior of 1 and 2 in a zero applied dc field primarily due to the ferromagnetic interactions taking place in these compounds.
Collapse
Affiliation(s)
| | | | | | | | - Fabrice Pointillart
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes, 35000 Rennes, France; (B.L.); (T.G.); (V.D.); (M.C.)
| |
Collapse
|
4
|
Savva M, Alexandropoulos DI, Pissas M, Perlepes SP, Papatriantafyllopoulou C, Sanakis Y, Tasiopoulos AJ. Heterometallic clusters based on an uncommon asymmetric "V-shaped" [Fe 3+(μ-OR)Ln 3+(μ-OR) 2Fe 3+] 6+ (Ln = Gd, Tb, Dy, Ho) structural core and the investigation of the slow relaxation of the magnetization behaviour of the [Fe 2Dy] analogue. Dalton Trans 2023; 52:6997-7008. [PMID: 36789752 DOI: 10.1039/d2dt03938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The synthesis, crystal structures, Mössbauer spectra and variable temperature dc and ac magnetic susceptibility studies of a new family of trinuclear heterometallic Fe3+/Ln3+ complexes, [Fe2Ln(PhCO2)3((py)2CO2)((py)2C(OMe)O)2(NO3)Cl] (Ln = Gd (1/Gd), Tb (1/Tb), Dy (1/Dy), and Ho (1/Ho)), where (py)2CO22- and (py)2C(OMe)O- are the anions of the gem-diol and hemiketal derivatives of di-2-pyridyl ketone, are reported. Compounds 1/Ln are based on an asymmetric "V-shaped" [Fe3+(μ-OR)Ln(μ-OR)2Fe3+]6+ structural core formed from the connection of the two terminal Fe3+ centers to the central Ln3+ ion either through one or two alkoxide groups originating from the alkoxide-type bridging ligands. Direct current magnetic susceptibility studies reveal the presence of weak antiferromagnetic interactions between the Fe3+ ions. Alternating current magnetic studies indicate the presence of a slow-magnetic relaxation process in 1/Dy with an energy barrier Ueff = 6.7 (±0.3) K and a pre-exponential factor, τ0 = 2.2 (±0.4) × 10-7 s. The electronic, magnetic and relaxation properties of the complexes were further monitored by variable temperature 57Fe Mössbauer spectroscopy. At T > 80 K the spectra from the complexes comprise two quadrupole doublets the hyperfine parameters of which reflect the distinct coordination environment of the two Fe3+ terminal sites. At T < 20 K, the Mössbauer spectra for 1/Dy are affected by magnetic relaxation effects. At 1.5 K, the spectrum of 1/Dy comprises well defined magnetic sextets indicating relaxation times slower than the characteristic time of the Mössbauer technique (10-7 s) in agreement with the dynamic magnetic measurements. 1/Gd exhibits broad unresolved magnetic sextets at 1.5 K indicating that the spin relaxation time is of the order of the Mössbauer characteristic time at this temperature. For 1/Tb, 1/Ho the Mössbauer spectra exhibit slight broadening even at the lowest available temperature consistent with magnetic relaxation times less than 10-7 s.
Collapse
Affiliation(s)
- Maria Savva
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus.
| | | | - Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Aghia Paraskevi, Athens, Greece.
| | | | | | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15341 Aghia Paraskevi, Athens, Greece.
| | | |
Collapse
|
5
|
Li HQ, Wang GL, Sun YC, Zhang YQ, Wang XY. Solvent Modification of the Structures and Magnetic Properties of a Series of Dysprosium(III) Single-Molecule Magnets. Inorg Chem 2022; 61:17537-17549. [DOI: 10.1021/acs.inorgchem.2c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guo-Lu Wang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing210023, China
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Lada ZG, Polyzou CD, Nika V, Stamatatos TC, Konidaris KF, Perlepes SP. Adventures in the coordination chemistry of 2-pyridyl oximes: On the way to 3d/4f-metal coordination clusters. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Han X, Liu B, Wang Z, Ross Craze A, Sun H, Rafiq Khan M, Liu J, Liu Z, Li J. Structure diversity and magnetic properties of manganese and cobalt coordination polymers with multiple carboxyl bridges. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Sheikh JA, Jena HS, Konar S. Co 3Gd 4 Cage as Magnetic Refrigerant and Co 3Dy 3 Cage Showing Slow Relaxation of Magnetisation. Molecules 2022; 27:molecules27031130. [PMID: 35164395 PMCID: PMC8840112 DOI: 10.3390/molecules27031130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Two structurally dissimilar 3d-4f cages having the formulae [(CoIII)3Gd4(μ3-OH)2(CO3) (O2CtBu)11(teaH)3]·5H2O (1) and [(CoIII)3Dy3(μ3-OH)4(O2CtBu)6(teaH)3]·(NO3)2·H2O (2) have been isolated under similar reaction conditions and stoichiometry of the reactants. The most important factor for structural diversity seems to be the incorporation of one μ3-carbonate anion in 1 and not in 2. Co atoms are in a +3 oxidation state in both complexes, as shown by the Bond Valence Sum (BVS) calculations and bond lengths, and as further supported by magnetic measurements. Co3Gd4 displays a significant magnetocaloric effect (−∆Sm = 25.67 J kg−1 K−1), and Co3Dy3 shows a single molecule magnet (SMM) behavior.
Collapse
Affiliation(s)
- Javeed Ahmad Sheikh
- Department of Chemistry, Government, College for Women, Constituent College of Cluster University, M. A. Road, Srinagar 190001, Jammu and Kashmir, India
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal 462066, Madhya Pradesh, India; or
- Correspondence: (J.A.S.); (S.K.); Tel.: +91-7889872799 (J.A.S.)
| | - Himanshu Sekhar Jena
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal 462066, Madhya Pradesh, India; or
- Department of Chemistry, Ghent University, Krijgslaan 281-S3 B, 9000 Ghent, Belgium
| | - Sanjit Konar
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal 462066, Madhya Pradesh, India; or
- Correspondence: (J.A.S.); (S.K.); Tel.: +91-7889872799 (J.A.S.)
| |
Collapse
|
9
|
Yu S, Hu HC, Liu D, Liang Y, Liang F, Yin B, Chen Z. Structural and magnetic studies of six-coordinated Schiff base Dy(III) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00356b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to tune magnetic anisotropies of six-coordinated Dy(III) complexes, four bis-Schiff bases bearing different spacers and one mono-Schiff base were designed, which are bis(2-hydroxylnaphthalenylmethylene)hydrazine (H2L1), bis(2-hydroxylnaphthylmethylene)ethylenediamine (H2L2), bis(2-hydroxylnaphthylmethylene)-propylenediamine...
Collapse
|
10
|
Zaworotko M, Deng M, Mukherjee S, Liang YJ, Fang XD, Zhu AX. Water vapour induced reversible switching between a 1-D coordination polymer and a 0-D aqua complex. Chem Commun (Camb) 2022; 58:8218-8221. [DOI: 10.1039/d2cc02777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Zn(3-tba)2], 1, a 1-D coordination polymer synthesised as 1·DMA, 1α, transformed to a nonporous form, 1β upon activation. 1β underwent further transformation to the dimeric complex [Zn(3-tba)2(H2O)2], 2, above 40%...
Collapse
|
11
|
Zakrzewski J, Kumar K, Zychowicz M, Jankowski R, Wyczesany M, Sieklucka B, Ohkoshi SI, Chorazy S. Combined Experimental and Ab Initio Methods for Rationalization of Magneto-Luminescent Properties of Yb III Nanomagnets Embedded in Cyanido/Thiocyanidometallate-Based Crystals. J Phys Chem Lett 2021; 12:10558-10566. [PMID: 34694818 PMCID: PMC8573772 DOI: 10.1021/acs.jpclett.1c02942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The ab initio calculations were correlated with magnetic and emission characteristics to understand the modulation of properties of NIR-emissive [YbIII(2,2'-bipyridine-1,1'-dioxide)4]3+ single-molecule magnets by cyanido/thiocyanidometallate counterions, [AgI(CN)2]- (1), [AuI(SCN)2]- (2), [CdII(CN)4]2-/[CdII2(CN)7]3- (3), and [MIII(CN)6]3- [MIII = Co (4), Ir (5), Fe (6), Cr (7)]. Theoretical studies indicate easy-axis-type ground doublets for all YbIII centers. They differ in the magnetic axiality; however, transversal g-tensor components are always large enough to explain the lack of zero-dc-field relaxation. The excited doublets lie more than 120 cm-1 above the ground one for all YbIII centers. It was confirmed by high-resolution emission spectra reproduced from the ab initio calculations that give reliable insight into energies and oscillator strengths of optical transitions. These findings indicate the dominance of Raman relaxation with the power n varying from 2.93(4) to 6.9(2) in the 4-3-5-1-2 series. This trend partially follows the magnetic axiality, being deeper correlated with the phonon modes schemes of (thio)cyanido matrices.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikolaj Zychowicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Robert Jankowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maciej Wyczesany
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Barbara Sieklucka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
12
|
Ouyang F, Jiang X, Liu X, Chen Y, Chen Y, Chen S, Jia L. Synthesis, structures and magnetic properties of copper(II) complexes with 1,2,3-triazole derivate as ligand: a single-crystal-to-single-crystal transformation from mononuclear to polymeric complex of copper(II). TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00448-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Khan MR, Niu X, Chen T, Liu Y, Liu Z, Liu B, Zhang Y, Li J. Structural diversity and magnetic properties of six ferrocenyl monocarboxylate Mn(ii), Ni(ii) and Co(ii) complexes with 1D aqua, carboxyl or dinuclear hydroxyl bridges. CrystEngComm 2021. [DOI: 10.1039/d1ce00189b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Six ferrocenyl monocarboxylate Mn(ii), Ni(ii) and Co(ii) complexes with different types of magnetic coupling bridges were synthesized successfully. 1–6 display intriguing structure diversity and magnetic properties.
Collapse
Affiliation(s)
- Misbha Rafiq Khan
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Xiaoge Niu
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Tianling Chen
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yan Liu
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry & Materials Science
- Shanxi Key Laboratory of Physico-Inorganic Chemistry
- Northwest University
- Xi'an 710069
| | - Yuxia Zhang
- School of Mathematics
- Zhengzhou University of Aeronautics
- Zhengzhou 450046
- China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Center
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
14
|
Kong M, Feng X, Wang J, Zhang YQ, Song Y. Tuning magnetic anisotropy via terminal ligands along the Dy⋯Dy orientation in novel centrosymmetric [Dy2] single molecule magnets. Dalton Trans 2021; 50:568-577. [DOI: 10.1039/d0dt03854g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SMM properties of four dinuclear DyIII complexes can be effectively tuned by the appropriate alteration of terminal ligands and lattice guests.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Lab For NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| |
Collapse
|
15
|
A novel heterometallic [GdIII2MnII2] cluster displaying larger cryogenic magnetocaloric effect. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Yang P, Yu S, Quan L, Hu H, Liu D, Liang Y, Li B, Liang F, Chen Z. Structure and Magnetic Properties of Two Discrete 3d‐4f Heterometallic Complexes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Panpan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Lixia Quan
- School of chemistry and Environmental Sciences Shangrao Normal University Shangrao 334001 P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang 473061 P. R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
17
|
Dmitrienko AO, Buzin MI, Setifi Z, Setifi F, Alexandrov EV, Voronova ED, Vologzhanina AV. Solid-state 1D → 3D transformation of polynitrile-based coordination polymers by dehydration reaction. Dalton Trans 2020; 49:7084-7092. [PMID: 32406437 DOI: 10.1039/d0dt00917b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In crystal structures of two chain coordination polymers [M(tcnopr3OH)2(H2O)2] (M = NiII and CoII; tcnopr3OH- = [(NC)2CC(O(CH2)3OH)C(CN)2]-) based on a N,O or N,N'-bridge polynitrile ligand, the parallel chains are connected via, respectively, C[triple bond, length as m-dash]NH-O and O-HO hydrogen bonds between uncoordinated functional groups of the ligand and coordinated water molecules. Upon heating, both solids undergo dehydration accompanied by degradation of their single crystals. Powder X-ray diffraction showed that non-isostructural triclinic single crystals transformed to isostructural monoclinic compounds. The solid-state reaction yielded 3D coordination polymers [M(tcnopr3OH)2] (M = NiII and CoII) based on a N,N',O-connected tcnopr3OH-. Although previously tens of complexes based on tcnopr3OH and similar anions were synthesized and X-ray characterized, none of these contain a tridentate polynitrile ligand. Thus, this study provides evidence that solid-state reactions allow obtaining novel coordination modes of polynitrile ligands. The possible pathways for the transformation of H-bonded networks to 3D coordination polymers are discussed on the basis of the topological approach. Applicability of the topological approach to predict possible networks of solid-state reaction products based on the crystal structures of initial compounds is demonstrated.
Collapse
Affiliation(s)
- Artem O Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds, RAS. 28 Vavilova str., 119991 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhong L, Chen WB, Li XH, OuYang ZJ, Yang M, Zhang YQ, Gao S, Dong W. Four Dinuclear and One-Dimensional-Chain Dysprosium and Terbium Complexes Based on 2-Hydroxy-3-methoxybenzoic Acid: Structures, Fluorescence, Single-Molecule-Magnet, and Ab Initio Investigation. Inorg Chem 2020; 59:4414-4423. [PMID: 32191444 DOI: 10.1021/acs.inorgchem.9b03555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique electronic configurations of lanthanide(III) ions generate abundant electronic energy levels, resulting in the fantastic magnetic and optical multifunctional properties of lanthanide complexes. Here, 2-hydroxy-3-methoxybenzoic acid (H2MBA) was used to construct four Dy(III) and Tb(III) complexes containing two isostructural dinuclear complexes of [Ln2(HMBA)2(MBA)2(DMF)2(H2O)2]·6H2O [Ln = Dy (1), Tb (2); DMF = N,N-dimethylformamide] and two other isostructural beltlike one-dimensional-chain complexes of [NH4][Ln(HMBA)4] [Ln = Dy (3), Tb (4)]. Fluorescence measurements reveal that H2MBA can sensitize Dy(III) and Tb(III) characteristic luminescence. Furthermore, complex 3 can emit white light under UV-light irradiation originating from a dichromatic mixture of a blue emission of H2MBA and a dominating yellow emission of Dy3+ ions. Magnetic susceptibility measurements show that two Dy(III) complexes are single-molecule magnets with anisotropy barriers of 90(2) and 31(5) cm-1 for 1 and 3, respectively. The magnet-luminescence-structure correlations as well as relaxation pathways are investigated by ab initio calculations and fluorescent spectrometry.
Collapse
Affiliation(s)
- Li Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiao-Hui Li
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhi-Jian OuYang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Song Gao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Zhao X, Li G, Ma J, Liu W. Two Octanuclear {Cu4Ln4} (Ln = Dy or Tb) Complexes with a Butterfly-Shaped Unit Exhibiting Zero-Field Single-Molecule Magnet Behavior. Inorg Chem 2020; 59:2328-2336. [DOI: 10.1021/acs.inorgchem.9b03137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoxi Zhao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ge Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Ma
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Feng M, Ruan ZY, Chen YC, Tong ML. Physical stimulus and chemical modulations of bistable molecular magnetic materials. Chem Commun (Camb) 2020; 56:13702-13718. [DOI: 10.1039/d0cc04202a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this Feature Article, we summarize the recent progress made in modulating the multifaceted magnetic behaviour of single-molecule magnets (SMMs) and spin-crossover (SCO) materials based on chemical modifications and external stimuli.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
21
|
Kong M, Feng X, Li J, Wang J, Zhang YQ, Song Y. Switchable slow relaxation of magnetization in photochromic dysprosium( iii) complexes manipulated by a dithienylethene ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04457a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The admirable photochromic and magnetic properties of two dithienylethene-based complexes can be modulated with UV/Vis light irradiation.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jing Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory For NSLSCS, School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Centre of Advanced Microstructure
- Nanjing University
- Nanjing 210023
| |
Collapse
|
22
|
Chen WB, Zhong L, Zhong YJ, Zhang YQ, Gao S, Dong W. Understanding the near-infrared fluorescence and field-induced single-molecule-magnetic properties of dinuclear and one-dimensional-chain ytterbium complexes based on 2-hydroxy-3-methoxybenzoic acid. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00628a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two Yb(iii) complexes with a dinuclear and belt-like one-dimensional chain structure were reported. Their near-infrared luminescence and single-molecule magnetic properties were investigated in detail.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Li Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Yun-Jing Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Song Gao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
23
|
Liu Y, Chen YC, Liu J, Chen WB, Huang GZ, Wu SG, Wang J, Liu JL, Tong ML. Cyanometallate-Bridged Didysprosium Single-Molecule Magnets Constructed with Single-Ion Magnet Building Block. Inorg Chem 2019; 59:687-694. [DOI: 10.1021/acs.inorgchem.9b02948] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yang Liu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Yan-Cong Chen
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Jiang Liu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Wen-Bin Chen
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Guo-Zhang Huang
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Si-Guo Wu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Jin Wang
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Jun-Liang Liu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Ming-Liang Tong
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
24
|
Xin Y, Wang J, Zychowicz M, Zakrzewski JJ, Nakabayashi K, Sieklucka B, Chorazy S, Ohkoshi SI. Dehydration-Hydration Switching of Single-Molecule Magnet Behavior and Visible Photoluminescence in a Cyanido-Bridged Dy IIICo III Framework. J Am Chem Soc 2019; 141:18211-18220. [PMID: 31626543 DOI: 10.1021/jacs.9b09103] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microporous magnets compose a class of multifunctional molecule-based materials where desolvation-driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of microporous magnet where a dehydration-hydration process within a bimetal coordination framework results in the switching of emissive DyIII single-molecule magnets (SMMs). We report a three-dimensional (3-D) cyanido-bridged coordination polymer, {[DyIII(H2O)2][CoIII(CN)6]}·2.2H2O (1), and its dehydrated form of {DyIII[CoIII(CN)6]} (2), which was obtained through a reversible single-crystal-to-single-crystal transformation. Both phases are composed of paramagnetic DyIII centers alternately arranged with diamagnetic hexacyanidocobaltates(III). The hydrated phase contains eight-coordinated [DyIII(μ-NC)6(H2O)2]3- complexes of a square antiprism geometry, while the dehydrated form contains six-coordinated [DyIII(μ-NC)6]3- moieties of a trigonal prism geometry. This change in coordination geometry results in the generation of DyIII single-molecule magnets in 2, whereas slow magnetic relaxation effect is not observed for DyIII sites in 1. The D4d-to-D3h symmetry change of DyIII complexes produces also the shift of photoluminescent color from nearly white to deep yellow thanks to the modulation of emission bands of f-f electronic transitions. A combined approach utilizing dc magnetic data and low-temperature emission spectra confirmed an axial crystal field of trigonal prismatic DyIII complexes in 2, which produces an Orbach type of slow magnetic relaxation. Therefore, we present a unique route to the efficient switching of SMM behavior and photoluminescence of DyIII complexes embedded in a 3-D cyanido-bridged framework.
Collapse
Affiliation(s)
- Yue Xin
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Junhao Wang
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Mikolaj Zychowicz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Jakub J Zakrzewski
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Koji Nakabayashi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Barbara Sieklucka
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Szymon Chorazy
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
25
|
Wang HS, Long QQ, Hu ZB, Yue L, Yang FJ, Yin CL, Pan ZQ, Zhang YQ, Song Y. Synthesis, crystal structures and magnetic properties of a series of chair-like heterometallic [Fe 4Ln 2] (Ln = Gd III, Dy III, Ho III, and Er III) complexes with mixed organic ligands. Dalton Trans 2019; 48:13472-13482. [PMID: 31454007 DOI: 10.1039/c9dt02638j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Four chair-like hexanuclear Fe-Ln complexes containing mixed organic ligands, namely, [Fe4Ln2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]·xCH3CN·yH2O (Ln = GdIII (1, x = 1, y = 0), DyIII (2, x = 1, y = 1), HoIII (3, x = 0, y = 2), and ErIII (4, x = 1, y = 3); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone and pdmH2 = 2,6-pyridinedimethanol) have been obtained by employing di-2-pyridyl ketone and 2,6-pyridinedimethanol reacting with FeCl3 and Ln(NO3)3 in MeCN. The structures of 1-4 are similar to each other except for the number of lattice solvent molecules. Four FeIII and two LnIII in these complexes comprise a chair-like core with the "body" constructed by four FeIII ions and the "end" constructed by two LnIII ions. Among the four compounds, 2 shows field-induced single molecule magnet behavior as revealed by ac magnetic susceptibility studies, with the effective energy barrier and the pre-exponential factor of 22.07 K and 8.44 × 10-7 s, respectively. Ab initio calculations indicated that, among 2_Dy, 3_Ho and 4_Er fragments, the energy gap between the lowest two spin-orbit states for 2_Dy is the largest, while the tunneling gap for 2 is the smallest. These might be the reasons for complex 2 exhibiting SMM behavior. Additionally, the orientations of the magnetic anisotropy of DyIII in 2 were obtained by electrostatic calculations and ab initio calculations, both indicating that the directions of the main magnetic axis of Dy1 ions are almost aligned along Dy1-O5 (O5 from the pdm2- ligand).
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Zhao-Bo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Lin Yue
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Feng-Jun Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Cheng-Ling Yin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
26
|
Dey A, Acharya J, Chandrasekhar V. Heterometallic 3d–4f Complexes as Single‐Molecule Magnets. Chem Asian J 2019; 14:4433-4453. [DOI: 10.1002/asia.201900897] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Atanu Dey
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad- 500107 India
| | - Joydev Acharya
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur- 208016 India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad- 500107 India
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur- 208016 India
| |
Collapse
|
27
|
Xie SF, Huang LQ, Zhong L, Lai BL, Yang M, Chen WB, Zhang YQ, Dong W. Structures, Single-Molecule Magnets, and Fluorescent Properties of Four Dinuclear Lanthanide Complexes Based on 4-Azotriazolyl-3-hydroxy-2-naphthoic Acid. Inorg Chem 2019; 58:5914-5921. [DOI: 10.1021/acs.inorgchem.9b00260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shang-Fang Xie
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li-Qian Huang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Bi-Lin Lai
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Zhong L, Xie SF, He JQ, Zhong QS, Yang M, Chen WB, Dong W. Syntheses, structures, magnetism and electrocatalytic oxygen evolution for four cobalt, manganese and copper complexes with dinuclear, 1D and 3D structures. Dalton Trans 2019; 48:3467-3475. [DOI: 10.1039/c9dt00227h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Structures, magnetism and electrocatalytic oxygen evolution for four dinuclear, 1D and 3D complexes based on transition metals were reported.
Collapse
Affiliation(s)
- Li Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Shang-Fang Xie
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Jian-Qiang He
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Qi-Sui Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
29
|
Ke H, Wei W, Yang Y, Zhang J, Zhang YQ, Xie G, Chen S. Effect of coordination anion substitutions on relaxation dynamics of defect dicubane Zn2Dy2 tetranuclear clusters. Dalton Trans 2019; 48:7844-7852. [DOI: 10.1039/c9dt01074b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We showcase the coordination anion substitution effect on the relaxation dynamics of defect dicubane Zn2Dy2 tetranuclear clusters.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yongsheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
30
|
Sun N, Wang H, Liu T, Qi D, Jiang J. Magnetic investigations over reversibly switched chiral (phthalocyaninato)(porphyrinato) dysprosium double-decker compounds. Dalton Trans 2019; 48:1586-1590. [DOI: 10.1039/c8dt04008g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work represents one example of reversibly tuning the molecular magnetic properties of Ln-based compounds and elucidates an abnormal f-radical effect.
Collapse
Affiliation(s)
- Nana Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
31
|
Wang HL, Ma XF, Zhu ZH, Zhang YQ, Zou HH, Liang FP. A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00582j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of dysprosium-based HOFs (Dy–HOFs) were designed and synthesized for the first time under solvothermal conditions. Herein, we achieved the magnetic off → on SIM switching of Dy–HOFs under thermal driving conditions.
Collapse
Affiliation(s)
- Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiong-Feng Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zhong-Hong Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
| |
Collapse
|
32
|
Yu S, Chen Z, Hu H, Li B, Liang Y, Liu D, Zou H, Yao D, Liang F. Two mononuclear dysprosium(iii) complexes with their slow magnetic relaxation behaviors tuned by coordination geometry. Dalton Trans 2019; 48:16679-16686. [DOI: 10.1039/c9dt03253c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report here two field-induced single-ion magnets of Dy(iii), which present octahedral and pentagonal–bipyramidal coordination geometries, respectively, with their magnetic performances tuned by the coordination geometries of Dy(iii).
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Huahong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Di Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|