1
|
Mackenroth AV, Antoni PW, Shiri F, Bendel C, Mayer C, Gross JH, Rominger F, Rudolph M, Ariafard A, Hashmi ASK. Gold-Catalysed Intramolecular Reaction of Alkynes with Sulfoximines Acting as N- and O-Transfer Reagents. Angew Chem Int Ed Engl 2024:e202420360. [PMID: 39661478 DOI: 10.1002/anie.202420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Among the nucleophilic oxidants employed in the gold-catalysed oxidation of alkynes, sulphur-based reagents have played a substantial role since the beginning, granting access to the respective gold carbene intermediates. Herein, we describe the first example of the substance class of sulfoximines being used as atom transfer reagents to alkynes in gold catalysis. Based on the transformation of N-(2-alkynylphenyl) sulfoximines to 3H-indol-3-ones, it is demonstrated that the sulfoximine functionality is capable of selectively transferring first its nitrogen moiety to the alkyne, forming the α-imino gold carbene, which is then oxidised by the released sulfoxide moiety in a second step via a pseudo-intramolecular mechanism-a distinctive feature that differentiates this work mechanistically from earlier studies. A combination of extensive experimental and theoretical studies provides evidence for this mechanistic rationale. As no external reagents for the 1,2-difunctionalisation of the alkyne unit are required, a wide variety of functional groups are tolerated in the transformation, affording the desired 3H-indol-3-ones in mostly good yields. It was further also showcased that it is possible to combine our methodology with additional transformations of the 3H-indol-3-one core in one-pot procedures, allowing facile access to C2-quaternary indolin-3-one structures.
Collapse
Affiliation(s)
- Alexandra V Mackenroth
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Patrick W Antoni
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Farshad Shiri
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Christoph Bendel
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christian Mayer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Arutiunov N, Zatsepilina AM, Aksenova AA, Aksenov NA, Aksenov DA, Leontiev AV, Aksenov AV. One-Pot Synthesis of N-Fused Quinolone-4 Tetracyclic Scaffolds from 2,2-Disubstituted Indolin-3-ones. ACS OMEGA 2024; 9:45501-45517. [PMID: 39554462 PMCID: PMC11561625 DOI: 10.1021/acsomega.4c07691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
A cascade transformation of C2-quaternary indoxyls leading to an efficient assembly of complex (dihydro)indolo[1,2-a]quinolin-5-one ring systems is reported. The method involves the gram-scale preparation of 2-(2-aryl-3-oxoindolin-2-yl)-2-phenylacetonitriles which are then converted with methyl ketones to the corresponding 2-(2-oxo-2-aryl(alkyl)ethyl)-2-phenylindolin-3-ones. The latter can either be isolated with good yields (75-96%) or, in the case of o-nitroacetophenone, used in situ for further base-assisted intramolecular SNAr cyclization resulting in indoxyl-fused quinolone-4 hybrids (up to 95%).
Collapse
Affiliation(s)
- Nikolai
A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna M. Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna A. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| |
Collapse
|
3
|
Wang Y, Li Y, Chen H, Lan Y, Pi C, Wu Y, Cui X. Enantioselective de novo construction of 3‑oxindoles via organocatalyzed formal [3 + 2] annulation from simple arylamines. Nat Commun 2024; 15:6183. [PMID: 39039050 PMCID: PMC11263680 DOI: 10.1038/s41467-024-50400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
The de novo construction of enantioenriched 3-hydroxyindolenines and 3-oxindoles from easily available starting materials has been highly desired. Herein, an enantioselectively intermolecular direct [3 + 2] annulation of aryl amine with 2,3-diketoesters to construct 3-hydroxyindolenines with a chiral tertiary alcohol has been disclosed. The results of control experiments and DFT calculation revealed that π - π interaction plays a pivotal role in the enantioselectivity-determining process of [3 + 2] annulation. The following unusual concerted [1,2]-ester migration provides a family of chiral 3-oxindoles in good to excellent yields with excellent enantioselectivity.
Collapse
Affiliation(s)
- Yong Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yanyan Li
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haohua Chen
- State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, Henan, PR China.
- Pingyuan Laboratory, Henan, PR China.
| | - Yu Lan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China
- Pingyuan Laboratory, Henan, PR China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China
- Pingyuan Laboratory, Henan, PR China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China
- Pingyuan Laboratory, Henan, PR China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, PR China.
- Pingyuan Laboratory, Henan, PR China.
| |
Collapse
|
4
|
Wang WB, Lu JC, Bai H, Fu YM, Cheng LJ, Zhu CF, Li YG, Wu X. Gold/Chiral Amine Relay Catalysis Enables Asymmetric Synthesis of C2-Quaternary Indolin-3-ones. Org Lett 2024; 26:1792-1796. [PMID: 38415597 DOI: 10.1021/acs.orglett.3c04285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A mild and effective strategy for the asymmetric synthesis of C2-quaternary indolin-3-ones from 2-alkynyl arylazides and ketones by gold/chiral amine relay catalysis is described. In this reaction, 2-alkynyl arylazides undergo gold-catalyzed cyclization, nucleophilic attack, and oxidation to form intermediate 2-phenyl-3H-indol-3-ones, followed by an l-proline-catalyzed asymmetric Mannich reaction with ketones, to afford corresponding products in satisfactory yields with excellent enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Wen-Bin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Ji-Chao Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Hao Bai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yan-Ming Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Lan-Jun Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Cheng-Feng Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
5
|
Yang F, Wang L, Liang M, Zhang L, Fan B, Yao B. Pd-Catalyzed Asymmetric Allylation Reaction of 2-Aryl-3 H-indol-3-ones with Allyltrimethylsilane. J Org Chem 2024; 89:1873-1879. [PMID: 38241606 DOI: 10.1021/acs.joc.3c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
An efficient method for the first ene-reaction of 2-aryl-3H-indol-3-ones with allyltrimethylsilane has been developed for the first time. The reaction proceeded under the catalysis of Pd(OAc)2 and chiral phosphoric ligand L11 in the presence of Cu(CF3COO)2·XH2O, PivOH, and 5 Å molecular sieves in DMSO at 60 °C. The present methodology can avoid the impact of amine products generated by the reaction on the catalyst, and at the same time, the high catalytic activity of classical palladium catalysts still has catalytic ability for low electrophilic keto-imines. The desired products were furnished in excellent yields with good enantioselectivity.
Collapse
Affiliation(s)
- Fan Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lun Wang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Meiqi Liang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Linchun Zhang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, Yunnan, People's Republic of China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
6
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
7
|
Zou CP, Ma T, Qiao XX, Wu XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3-catalyzed β-C(sp 3)-H alkylation of tertiary amines with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:4393-4397. [PMID: 37161837 DOI: 10.1039/d3ob00481c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The β-C-H functionalization of amines is one of the most powerful tools for the synthesis of saturated nitrogen-containing heterocycles in organic synthesis. However, the β-C-H functionalization of amines via redox-neutral addition with cyclic-ketimines is still unprecedented. Herein, the β-C-H functionalization of tertiary amines is described, providing the corresponding 1,3-diamines containing the indolin-3-one moiety in high yields via the B(C6F5)3-catalyzed borrowing hydrogen strategy. According to the experimental results, a possible catalytic cycle has been proposed to rationalize the process of this reaction. Notably, the β-C-H alkylation of amines is external oxidant- and transition-metal-free, which makes a significant contribution to promoting economical chemical synthesis.
Collapse
Affiliation(s)
- Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
8
|
Wu XX, He Y, Qiao XX, Ma T, Zou CP, Li G, Zhao XJ. Organocatalyzed Enantioselective Aza-Morita-Baylis-Hillman Reaction of Cyclic Ketimine with α,β-Unsaturated γ-Butyrolactam. J Org Chem 2023. [PMID: 37157120 DOI: 10.1021/acs.joc.2c02765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The enantioselective aza-MBH reaction is an efficient strategy for constructing novel carbon-carbon bonds, providing access to multitudinous chiral densely functionalized MBH products. However, the enantioselective aza-MBH reaction of cyclic-ketimines that would generate a versatile synthon is still missing and challenging. Herein, we developed a challenging direct organocatalytic asymmetric aza-MBH reaction involving cyclic ketimines attached to a neutral functional group. Moreover, the α,β-unsaturated γ-butyrolactam was utilized as a rare nucleophile alkene in this work. The reactions provide enantiomerically enriched 2-alkenyl-2-phenyl-1,2-dihydro-3H-indol-3-ones, bearing with a tetra-substituted stereogenic center. Moreover, this reaction features high α-selectivities, high enantioselectivities (up to 99% ee), and good yields (up to 80%).
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
9
|
Xu Y, Fan H, Yang F, Xu S, Zhao X, Liao X, Zhang X. PPh 3-Mediated Cascade Reaction of 2-Alkynylnitrobenzenes and Thioureas for the Construction of Imidazo[4,5- b]indole-2-thiones. J Org Chem 2023. [PMID: 36800292 DOI: 10.1021/acs.joc.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple method for the preparation of imidazo[4,5-b]indole-2-thiones from 2-alkynylnitrobenzenes and thioureas is described. In the reaction, a Wittig-like process was triggered by PPh3 and followed by a cyclization step. The products were afforded in yields of 70-98% under mild conditions. Additionally, the 2-alkynylnitrobenzenes were stable and could be prepared via a simple coupling step.
Collapse
Affiliation(s)
- Yao Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hui Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fan Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shijie Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xuechun Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoming Liao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
10
|
Sun M, Gui J, Zhong R, Wu H, Liu S, Li J, Yang J, Wang Z. TfOH-catalyzed direct Michael addition and cascade cyclization reactions of unactivated ketones: A divergent route to functionalized benzofurans and benzofuro[3,2-b]pyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Ma T, He Y, Qiao XX, Zou CP, Wu XX, Li G, Zhao XJ. Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of naphthols and electron-rich phenols with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:489-493. [PMID: 36541043 DOI: 10.1039/d2ob02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enantioselective aza-Friedel-Crafts reaction is one of the most straightforward and efficient strategies for constructing a new carbon-carbon bond bearing quaternary stereocenter in organic synthesis, but the catalytic asymmetric aza-Friedel-Crafts reaction of naphthols/phenols with cyclic-ketimines attached to a neutral functional group remains still relatively unexplored. Herein, a highly enantioselective aza-Friedel-Crafts reaction of cyclic-ketimines and naphthols/phenols has been realized using a chiral phosphoric acid catalyst. A variety of chiral aminonaphthols (chiral indolin-3-ones) containing a quaternary stereocenter at the C2 position were obtained with excellent outcomes (up to 97% yield, 98% ee). Moreover, the synthetic utility of the enantiomerically enriched chiral aminonaphthols was demonstrated in some efficient transformations. According to the experimental results, a possible transition state model has been proposed to rationalize the origin of asymmetric induction.
Collapse
Affiliation(s)
- Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
12
|
Yu L, Huang S, Cai T, Du K, Wu C, Dong H, Shen R. Diastereoselective Access to Triazolo[1,2- a]indolines via a Bio-Inspired Oxidative Cyclization of NH-Indoles. J Org Chem 2022; 87:15114-15119. [PMID: 36201282 DOI: 10.1021/acs.joc.2c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Establishing three-dimensional chemicals by using the C2-C3 π bond of indoles has always been a research hotspot in organic synthesis; however, employing the oxidative C2-C3 π bond of indoles to generate imine which would lead to the N1-C2 π bond cyclization under metal-free conditions is still rare. Here, we report a bio-inspired synthesis of triazolo[1,2-a]indolines by the oxidative cyclization between NH-indoles and azomethine imines with 3,3-dimethyldioxirane as the sole oxidant under metal-free and mild conditions. This finding represents an elegant instance of tri-functionalization of NH-indoles, which provides rapid access to a broad range of triazolo[1,2-a]indolines with tetrahydroisoquinolines in one single step. Up to 86% yield and above 20:1 dr value are observed. The radical mechanism and proton migration process have been speculated.
Collapse
Affiliation(s)
- Lemao Yu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Senhao Huang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Chunlei Wu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Huaping Dong
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing312000, China
| |
Collapse
|
13
|
Nagare YK, Shah IA, Yadav J, Pawar AP, Rangan K, Choudhary R, Iype E, Kumar I. Electrochemical Oxidative Addition of Nucleophiles on 2-Arylindoles: Synthesis of C2-Heteroquaternary Indolin-3-ones. J Org Chem 2022; 87:15771-15782. [DOI: 10.1021/acs.joc.2c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Imtiyaz Ahmad Shah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad 500078, Telangana, India
| | | | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
14
|
Zhou X, Xiong T, Jiang J. Gold-catalyzed redox cycloisomerization/nucleophilic addition/reduction: direct access to 2-phosphoryl indolin-3-ones. Chem Commun (Camb) 2022; 58:8568-8571. [PMID: 35815915 DOI: 10.1039/d2cc02774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold(I)-catalyzed redox cycloisomerization/nucleophilic addition/reduction reaction of o-nitroalkynes with various H-phosphorus oxides is established. Through the intramolecular redox cyclization of o-nitroalkynes and subsequent intermolecular nucleophilic addition/reduction with no external reactant, a variety of arylphosphoryl and alkylphosphoryl indolin-3-ones with high functional-group compatibility are obtained in moderate to good yields. Mechanistic studies suggest that phosphorus nucleophiles mediate the cleavage of the N-O bond as a reductant.
Collapse
Affiliation(s)
- Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
15
|
Fan H, Xu Y, Yang F, Xu S, Zhao X, Zhang X. PPh
3
‐Mediated Wittig‐Like/Mannich Tandem Reactions of 2‐Alkynylnitrobenzenes with Ketones for the Synthesis of 2,2‐Disubstituted Indolin‐3‐Ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Fan
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Yao Xu
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Fan Yang
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Shijie Xu
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xuechun Zhao
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xiaoxiang Zhang
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
16
|
Yan J, Zheng L, Wang J, Liu X, Hu Y. Indoles Oxidative Ring-Opening/Cyclization Cascade with the 1,2-Diaminoarenes: Direct Synthesis of 2-Aryl-3-(2-aminoaryl)quinoxalines. J Org Chem 2022; 87:6347-6351. [PMID: 35420817 DOI: 10.1021/acs.joc.1c03120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mild oxidative sequential tandem reaction was developed to rapidly generate 2-aryl-3-(2-aminoaryl) quinoxalines. This method exploited 2-substituted indoles as substrate to form quinoxalines in a one-pot reaction. The key to this tandem reaction was the formation of 3-iodoindoles, which underwent Kornblum-type oxidation with DMSO to generate active imine 2-substitued 3H-indol-3-ones. The active imines were captured in situ by 1,2-diaminobenzenes to construct diverse quinoxalines. The transformation can be accomplished at room temperature with excellent functional group tolerance.
Collapse
Affiliation(s)
- Jianwei Yan
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Linxia Zheng
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Jiangfei Wang
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Xiaomin Liu
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Zhao Y, An J, Yang F, Guan X, Fu X, Li Z, Wang D, Zhou M, Yang Y, He B. One‐Pot Asymmetric Oxidative Dearomatization of 2‐Substituted Indoles by Merging Transition Metal Catalysis with Organocatalysis to Access C2‐Tetrasubstituted Indolin‐3‐Ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yong‐Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Jian‐Xiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Fen‐Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Xiao‐Zhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Zong‐Qin Li
- Department of Neurology Sichuan Mianyang 404 Hospital Mianyang 621000 P.R. China
| | - Da‐Peng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 P.R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P.R. China
| |
Collapse
|
18
|
An JX, Yang FF, Wang P, Gu ZC, Li Y, Chen L, Zhao YL, He B. A solid-supported organocatalyst for asymmetric Mannich reaction to construct C2-quaternary indolin-3-ones. RSC Adv 2022; 12:7040-7045. [PMID: 35424681 PMCID: PMC8982289 DOI: 10.1039/d2ra00456a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022] Open
Abstract
A simple and novel solid-supported organocatalyst from a 2-chlorotrityl chloride resin-immobilized 4-hydroxyproline was developed, and this organocatalyst has been used for the asymmetric Mannich reaction of 2-aryl-3H-indol-3-ones and aldehydes/ketones. A series of C2-quaternary indolin-3-ones were prepared in good yields (up to 83%) and with excellent diastereoselectivities (up to 20 : 1) and enantioselectivities (up to 99% ee). In addition, the organocatalyst can be recovered by simple filtration and also be reused for the asymmetric Mannich reaction without significant loss of catalytic efficiency. A simple and novel solid-supported organocatalyst from a 2-chlorotrityl chloride resin-immobilized 4-hydroxyproline was developed, which has been used for the asymmetric Mannich reaction of 2-aryl-3H-indol-3-ones and aldehydes/ketones.![]()
Collapse
Affiliation(s)
- Jian-Xiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Fen-Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Zhi-Cheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine, TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
| |
Collapse
|
19
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
20
|
Li Y, Xu J, He LJ, Luo YF, Meng JP, Tang DY, Li HY, Chen ZZ, Xu ZG. Dieckmann Condensation of Ugi N-Acylamino Amide Product: Facile Access to Functionalized 2,2-Disubstituted Indolin-3-ones. J Org Chem 2021; 87:823-834. [PMID: 34918940 DOI: 10.1021/acs.joc.1c02501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structurally unique 2,2-disubstituted indolin-3-ones with a quaternary carbon center have been constructed through a novel C-C bond formation at the C3 position of Ugi N-acylamino amide adducts employing an organic base-mediated Dieckmann condensation. This facile, flexible protocol can be fine-tuned to construct drug-like pyrazino[1,2-a]indole fragments with the same quaternary carbon center only through the variation of the acid part in Ugi input. This novel and expeditious methodology has a broad scope and can rapidly generate the drug-like indolin-3-one core.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Liu-Jun He
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Ya-Fei Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
21
|
Xu H, Ye M, Yang K, Song Q. Regioselective Cross-Coupling of Isatogens with Boronic Acids to Construct 2,2-Disubstituted Indolin-3-one Derivatives. Org Lett 2021; 23:7776-7780. [PMID: 34617759 DOI: 10.1021/acs.orglett.1c02808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein we present a transition-metal-free cross-coupling reaction of isatogens with boronic acids through a 1,4-metalate shift of a boron "ate" complex. This coupling reaction provides a feasible method to deliver valuable 2,2-disubstituted indolin-3-one derivatives with excellent regioselectivity, which exhibit operational simplicity, good functional group tolerance, and a broad substrate scope.
Collapse
Affiliation(s)
- Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.,Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Chen S, Li M, Gu Y. Acid-catalyzed cleavage of C-C bonds enables atropaldehyde acetals as masked C2 electrophiles for organic synthesis. Chem Commun (Camb) 2021; 57:10431-10434. [PMID: 34549750 DOI: 10.1039/d1cc04000f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acid-catalyzed tandem reactions of atropaldehyde acetals were established for the synthesis of three important molecules, 2,2-disubstituted indolin-3-ones, naphthofurans and stilbenes. The synthesis was realized using novel reaction cascades, which involved the same two initial steps: (i) SN2' substitution, in which the atropaldehyde acted as an electrophile; and (ii) oxidative cleavage of the carbon-carbon bond of the generated phenylacetaldehyde-type products. Compared with literature methods, the present protocol not only avoided the use of expensive noble metal catalysts, but also enabled a simple operation.
Collapse
Affiliation(s)
- Shaomin Chen
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Minghao Li
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Yanlong Gu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China. .,School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, 730000, Lanzhou, China
| |
Collapse
|
23
|
Recent Advances in Selected Asymmetric Reactions Promoted by Chiral Catalysts: Cyclopropanations, Friedel–Crafts, Mannich, Michael and Other Zinc-Mediated Processes—An Update. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main purpose of this review article is to present selected asymmetric synthesis reactions in which chemical and stereochemical outcomes are dependent on the use of an appropriate chiral catalyst. Optically pure or enantiomerically enriched products of such transformations may find further applications in various fields. Among an extremely wide variety of asymmetric reactions catalyzed by chiral systems, we are interested in: asymmetric cyclopropanation, Friedel–Crafts reaction, Mannich and Michael reaction, and other stereoselective processes conducted in the presence of zinc ions. This paper describes the achievements of the above-mentioned asymmetric transformations in the last three years. The choice of reactions is related to the research that has been carried out in our laboratory for many years.
Collapse
|
24
|
Jurczyk J, Lux MC, Adpressa D, Kim SF, Lam YH, Yeung CS, Sarpong R. Photomediated ring contraction of saturated heterocycles. Science 2021; 373:1004-1012. [PMID: 34385352 PMCID: PMC8627180 DOI: 10.1126/science.abi7183] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Saturated heterocycles are found in numerous therapeutics and bioactive natural products and are abundant in many medicinal and agrochemical compound libraries. To access new chemical space and function, many methods for functionalization on the periphery of these structures have been developed. Comparatively fewer methods are known for restructuring their core framework. Herein, we describe a visible light-mediated ring contraction of α-acylated saturated heterocycles. This unconventional transformation is orthogonal to traditional ring contractions, challenging the paradigm for diversification of heterocycles including piperidine, morpholine, thiane, tetrahydropyran, and tetrahydroisoquinoline derivatives. The success of this Norrish type II variant rests on reactivity differences between photoreactive ketone groups in specific chemical environments. This strategy was applied to late-stage remodeling of pharmaceutical derivatives, peptides, and sugars.
Collapse
Affiliation(s)
- Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Michaelyn C Lux
- Discovery Chemistry, Merck & Co., Inc., Boston, MA 02115, USA
| | - Donovon Adpressa
- Analytical Research and Development, Merck & Co. Inc., Boston, MA 02115, USA
| | - Sojung F Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yu-Hong Lam
- Computational and Structural Chemistry, Merck & Co. Inc., Rahway, NJ 07065, USA.
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, MA 02115, USA.
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Li P, Yang F, Hu G, Zhang X. Palladium-Catalyzed One-Pot Synthesis of Pyrroloindolines from 2-Alkynyl Arylazides and Thioacetamides. J Org Chem 2021; 86:10360-10367. [PMID: 34281342 DOI: 10.1021/acs.joc.1c01058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient synthetic method for the preparation of various pyrroloindolines from 2-alkynyl arylazides and thioacetamides was developed. The reaction was carried out in a one-pot process under mild reaction conditions to afford the products in moderate to good yields, which has the potential to be used in organic synthesis.
Collapse
Affiliation(s)
- Ping Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fan Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Guiwen Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
26
|
|
27
|
Yuan X, Wu X, Peng F, Yang H, Zhu C, Fu H. Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality. Chem Commun (Camb) 2020; 56:12648-12651. [PMID: 32960194 DOI: 10.1039/d0cc05432a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for chiral phosphoric acid-catalyzed asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality has been developed via the reaction of 3-arylindoles with 2-aryl-3H-indol-3-ones, and the target products were obtained in high yields with excellent enantioselectivity and diastereoselectivity.
Collapse
Affiliation(s)
- Xi Yuan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xudong Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Fei Peng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Haijun Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
28
|
Ye X, Pan Y, Chen Y, Yang X. Enantioselective Construction of Sulfur‐Containing Tetrasubstituted Stereocenters via Asymmetric Functionalizations of α‐Sulfanyl Cyclic Ketones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueqian Ye
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongkai Pan
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Yunrong Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
29
|
Vannada J, Sulthan M, Arun D, Dada R, Yaragorla S. Regiodivergent Synthesis of Penta-Substituted Pyrroles through a Cascade [3 + 2] Cyclization of C-Acylimines with Activated Alkynes and Aromatic Nucleophiles. J Org Chem 2020; 85:6697-6708. [PMID: 32319282 DOI: 10.1021/acs.joc.0c00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly robust one-pot, four-component cascade cyclization reaction of α-keto aldehydes, anilines, activated alkynes, and aromatic nucleophiles is developed to synthesize a diverse range of pharmaceutically important penta-substituted pyrroles. The reaction proceeds through the cascade cyclization of acylimines (in situ formed) with activated alkynes and aromatic nucleophiles such as indoles, pyrroles, and naphthols at room temperature under calcium(II) catalysis with high yields and broad substrate diversity.
Collapse
Affiliation(s)
- Jagadeshwar Vannada
- University College of Science, Osmania University, Saifabad, Hyderabad 500004, India
| | - Mahesh Sulthan
- School of Chemistry, University of Hyderabad, P.O.Central University, Hyderabad 500046, India.,University College of Science, Osmania University, Saifabad, Hyderabad 500004, India
| | - Doma Arun
- School of Chemistry, University of Hyderabad, P.O.Central University, Hyderabad 500046, India
| | - Ravikrishna Dada
- School of Chemistry, University of Hyderabad, P.O.Central University, Hyderabad 500046, India
| | - Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O.Central University, Hyderabad 500046, India
| |
Collapse
|
30
|
Chang YH, Peng WL, Chen IC, Hsu HY, Wu YK. Palladium-catalyzed α-arylation of indolin-3-ones. Chem Commun (Camb) 2020; 56:4660-4663. [PMID: 32211656 DOI: 10.1039/d0cc00435a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the catalytic α-arylation of indolin-3-ones was developed. The catalytic system comprising Pd(dba)2 and PAd3 was found to be optimal for the transformation. The protocol features broad functional group compatibility in that a range of arylated indoxyl derivatives bearing a fully substituted carbon center was synthesized with high efficiency. A preliminary bioassay study revealed that the selected indole-substituted indolin-3-ones exhibit favorable cytotoxic activities against HCT-116 cancer cell line.
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Li P, Sheng R, Zhou Z, Hu G, Zhang X. Synthesis of N
-Fused Seven-Membered Indoline-3-ones via
a Palladium-Catalyzed One-Pot Insertion Reaction from 2-Alkynyl Arylazides and Cyclic β
-Diketones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ping Li
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Rong Sheng
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Zhiqiang Zhou
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Guiwen Hu
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Xiaoxiang Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| |
Collapse
|
32
|
Zhang Q, Li Y, Wang J, Yang C, Liu C, Li X, Cheng J. B(C
6
F
5
)
3
/Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2‐Aryl‐3
H
‐indol‐3‐ones and α‐Methylstyrenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Xia Zhang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Cheng‐Jun Liu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
33
|
Zhang QX, Li Y, Wang J, Yang C, Liu CJ, Li X, Cheng JP. B(C 6 F 5 ) 3 /Chiral Phosphoric Acid Catalyzed Ketimine-Ene Reaction of 2-Aryl-3H-indol-3-ones and α-Methylstyrenes. Angew Chem Int Ed Engl 2020; 59:4550-4556. [PMID: 31943586 DOI: 10.1002/anie.201915226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Indexed: 11/05/2022]
Abstract
The enantioselective ketimine-ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine-ene reactions of 2-aryl-3H-indol-3-ones with α-methylstyrenes were achieved by utilizing a B(C6 F5 )3 /chiral phosphoric acid (CPA) catalyst. These ketimine-ene reactions proceed well with low catalyst loading (B(C6 F5 )3 /CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2-allyl-indolin-3-ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6 F5 )3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen-bonding interactions, especially the enhanced N-H⋅⋅⋅O hydrogen-bonding interaction, differentiates the free energy of the transition states of CPA and B(C6 F5 )3 /CPA, thereby inducing the improvement of stereoselectivity.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cheng-Jun Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Zhou Z, Xu Y, Zhu B, Li P, Hu G, Yang F, Xu S, Zhang X. One-pot synthesis of 3-hydroxy-2-oxindoles via acyloin rearrangements of 2-hydroxy-indolin-3-ones generated in situ from 2-alkynyl arylazides. NEW J CHEM 2020. [DOI: 10.1039/d0nj04588h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel one-pot method to prepare 3-hydroxy-2-oxindoles via acyloin rearrangements of 2-hydroxy-indolin-3-ones generated in situ from 2-alkynyl arylazides has been described.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Yao Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Boyu Zhu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Ping Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Guiwen Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
35
|
Li P, Zhu B, Xu Y, Zhou Z, Hu G, Yang F, Xu S, Zhang X. Palladium-catalyzed one-pot cycloaddition reactions of thioureas with 3H-indol-3-ones generated in situ from 2-alkynyl arylazides: rapid and efficient access to imidazoloindolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00799d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient palladium-catalyzed one-pot synthesis of imidazoloindolines from 2-alkynyl arylazides under mild reaction conditions has been described.
Collapse
Affiliation(s)
- Ping Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Boyu Zhu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Yao Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Zhiqiang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Guiwen Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
36
|
Lu FY, Chen YJ, Chen Y, Ding X, Guan Z, He YH. Highly enantioselective electrosynthesis of C2-quaternary indolin-3-ones. Chem Commun (Camb) 2020; 56:623-626. [DOI: 10.1039/c9cc09178e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An asymmetric electrosynthesis is developed by combining anodic oxidation and proline-catalysis to realize enantioselective synthesis of C2-quaternary indolin-3-ones from 2-arylindoles.
Collapse
Affiliation(s)
- Fo-Yun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yu-Jue Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuan Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xuan Ding
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Zhi Guan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yan-Hong He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
37
|
Feng FF, Li S, Cheung CW, Ma JA. Chiral β-Keto Propargylamine Synthesis via Enantioselective Mannich Reaction of Enamides with C-Alkynyl N-Boc N,O-Acetals. Org Lett 2019; 21:8419-8423. [DOI: 10.1021/acs.orglett.9b03181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| |
Collapse
|
38
|
Reddy KN, Rao MVK, Sridhar B, Subba Reddy BV. BINOL Phosphoric Acid‐Catalyzed Asymmetric Mannich Reaction of Cyclic
N
‐Acyl Ketimines with Cyclic Enones. Chem Asian J 2019; 14:2958-2965. [DOI: 10.1002/asia.201900556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- K. Nagarjuna Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - M. V. Krishna Rao
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - B. Sridhar
- Laboratory of X-ray CrystallographyCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - B. V. Subba Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| |
Collapse
|
39
|
Feng F, Li J, Li S, Ma J. Enantioselective Addition of Enamides to Cyclic Ketimines: Access to Chiral 3,3‐Disubstituted Isoindolin‐1‐Ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fang‐Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science & EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Jin‐Shan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science & EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science & EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science & EngineeringTianjin University Tianjin 300072 People's Republic of China
| |
Collapse
|
40
|
Peng H, Ma J, Duan L, Zhang G, Yin B. CuH-Catalyzed Synthesis of 3-Hydroxyindolines and 2-Aryl-3H-indol-3-ones from o-Alkynylnitroarenes, Using Nitro as Both the Nitrogen and Oxygen Source. Org Lett 2019; 21:6194-6198. [DOI: 10.1021/acs.orglett.9b01849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Peng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| | - Jinhui Ma
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lingfei Duan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China, 510640
| |
Collapse
|
41
|
Fang S, Jin S, Ma R, Lu T, Du D. Asymmetric Synthesis of C2-Quaternary Indolin-3-ones Enabled by N-Heterocyclic Carbene Catalysis. Org Lett 2019; 21:5211-5214. [DOI: 10.1021/acs.orglett.9b01823] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shuaishuai Fang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Shiyi Jin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Rui Ma
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
42
|
Singh A, Vanaparthi S, Choudhary S, Krishnan R, Kumar I. Synthesis of C2-tetrasubstituted indolin-3-ones via Cu-catalyzed oxidative dimerization of 2-aryl indoles and cross-addition with indoles. RSC Adv 2019; 9:24050-24056. [PMID: 35527913 PMCID: PMC9069668 DOI: 10.1039/c9ra04741g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
An efficient protocol for the synthesis of 2,2-disubstituted indolin-3-ones under mild conditions has been developed. This reaction involves the copper-catalyzed in situ oxidative de-aromatization of 2-arylindoles to indol-3-one, followed by self-dimerization as well as cross-addition with indoles under mild conditions. The result generates a wide variety of C2-tetrasubstituted indolin-3-ones with good to high yields (62–82%). A general protocol for the synthesis of 2,2-disubstituted indolin-3-ones has been developed through self-dimerization of 2-aryl indoles and cross-addition with indoles under mild Cu-catalyzed oxidative conditions with good to high yields.![]()
Collapse
Affiliation(s)
- Anoop Singh
- Department of Chemistry
- Birla Institute of Technology and Science
- India
| | | | - Sachin Choudhary
- Department of Chemistry
- Birla Institute of Technology and Science
- India
| | | | - Indresh Kumar
- Department of Chemistry
- Birla Institute of Technology and Science
- India
| |
Collapse
|
43
|
Liang RX, Wang K, Song LJ, Sheng WJ, Jia YX. Synthesis of tetracyclic indolin-3-ones through Pd-catalyzed intramolecular deacetylative dearomatization of 3-acetoxy-indoles. RSC Adv 2019; 9:13959-13967. [PMID: 35519305 PMCID: PMC9064017 DOI: 10.1039/c9ra02569c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
An efficient palladium-catalyzed intramolecular deacetylative dearomatization reaction of 3-acetoxyindoles has been developed. A range of tetracyclic indolin-3-ones bearing C2-quaternary stereocenters are achieved in good yields, showing a wide substrate scope for this reaction. A preliminary enantioselective reaction is established to furnish the product in 63% ee by using (R,R,R)-phosphoramide-PE as a chiral ligand. An efficient palladium-catalyzed intramolecular deacetylative dearomatization reaction of 3-acetoxyindoles is disclosed, affording tetracyclic indolin-3-ones bearing C2-quaternary stereocenters in good yields.![]()
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ke Wang
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ling-Jie Song
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Wei-Jian Sheng
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yi-Xia Jia
- College of Chemical Engineering
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
44
|
Ding X, Dong CL, Guan Z, He YH. Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Ding
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; Chongqing 400715 China
| |
Collapse
|
45
|
Ding X, Dong CL, Guan Z, He YH. Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles. Angew Chem Int Ed Engl 2018; 58:118-124. [PMID: 30421485 DOI: 10.1002/anie.201811085] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/30/2018] [Indexed: 11/12/2022]
Abstract
The combination of photoredox and enzymatic catalysis for the direct asymmetric one-pot synthesis of 2,2-disubstituted indol-3-ones from 2-arylindoles through concurrent oxidization and alkylation reactions is described. 2-Arylindoles can be photocatalytically oxidized to 2-arylindol-3-one with subsequent enantioselective alkylation with ketones catalyzed by wheat germ lipase (WGL). The chiral quaternary carbon center at C2 of the indoles was directly constructed. This mode of concurrent photobiocatalysis provides a mild and powerful strategy for one-pot enantioselective synthesis of complex compounds. The experiments proved that other lipases containing structurally analogous catalytic triad in the active site also can catalyze the reaction in the same way. This reaction is the first example of combining the non-natural catalytic activity of hydrolases with visible-light catalysis for enantioselective organic synthesis and it does not require any cofactors.
Collapse
Affiliation(s)
- Xuan Ding
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
46
|
Li P, Yong W, Sheng R, Rao W, Zhu X, Zhang X. Pd‐Catalyzed One‐Pot Insertion Reaction of Cyclic
C
‐Acylimines into Carbon‐Carbon σ‐Bonds for the Synthesis of Polyfunctional Indolin‐3‐ones from 2‐Alkynyl Arylazides and Aryl Ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ping Li
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Wanxiong Yong
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Rong Sheng
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Weidong Rao
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xinbao Zhu
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xiaoxiang Zhang
- Jiangsu key lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|