1
|
Wu FH, Ren MJ, Wang M, Sun WB, Wu KL, Cheng YS, Yan Z. One-dimensional nitrogen doped porous carbon nano-array arranged by carbon nanotubes for electrochemical sensing ascorbic acid, dopamine and uric acid simultaneously. NANOTECHNOLOGY 2021; 32:255601. [PMID: 33721849 DOI: 10.1088/1361-6528/abeeb4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In this work, one-dimensional nitrogen doped porous carbon nano-arrays arranged by carbon nanotube (1D CNTs@NPC) were first constructed, using a coating technology at room temperature and followed by high temperature carbonization. It was expected that the resulting glassy carbon electrodes modified by 1D CNTs@NPC (CNTs@NPC/GCE) could express different electrochemical responses to ascorbic acid (AA), dopamine (DA), uric acid (UA), by virtue of the synergistic-improved effect between CNTs and NPC. Under the optimized conditions, there were excellent analytical parameters for CNTs@NPC/GCE to detect AA, DA and UA, i.e. a wide linear range of 40-2100μM for AA, 0.5-49μM for DA and 3-50μM for AA with low detection limits of 0.36μM, 0.02μmol l-1and 0.57μM respectively. Importantly, the proposed CNTs@NPC/GCE was efficiently applied to determine AA, DA and UA in some real samples with high stability, reproducibility and selectivity. This work will offer an efficient potential for diagnosing ascorbic acid, dopamine or uric acid-related diseases on clinical testing in future.
Collapse
Affiliation(s)
- Fang-Hui Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Mei-Juan Ren
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Wen-Bin Sun
- School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Kong-Lin Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Yuan-Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Du G, Li H, Chen Q, Kuang Q, Jiang Z, Xie Z. Tailoring the Chemical Potential of Crystal Growth Units to Tune the Bulk Structure of Nanocrystals. SMALL METHODS 2021; 5:e2000447. [PMID: 34927828 DOI: 10.1002/smtd.202000447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Indexed: 06/14/2023]
Abstract
The intrinsic factors affecting the bulk structures of nanocrystallites are not well explored during crystallization. In this study, it is demonstrated that the chemical potential of growth units plays decisive role in governing the final structure of nanocrystals. It is found that the types of reaction vessels are able to vary the chemical potential of growth units, and make the Pt and Pd nanocrystals (NCs) unexpectedly evolve from the cyclic penta-twinned to the single-crystal nanostructures. In turn, it is concluded that the crystal growth units with lower chemical potential favor the formation of crystal nuclei with lower chemical potential during the nucleation. This new approach in tuning the bulk structures of NCs enriches the understanding of the crystallization process under supersaturated (nonequilibrium) condition, and would provide a general guidance for controlling nanocrystals with various thermodynamic forms.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guifen Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiaoli Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiyuan Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|