1
|
Liu G, Wang P, Zhang H, Li Y, Zhan S. Enhancement of Pt-O Synergistic Sites through Titanium Vacancies for Low-Temperature Nitrogen Oxide Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20064-20073. [PMID: 37936375 DOI: 10.1021/acs.est.3c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Improving the reaction rate of each step is significant for accelerating the multistep reaction of NO reduction by H2. However, simultaneously enhancing the activation of different gaseous reactants using single-atom catalysts remains a challenge to maximize the activity. Herein, we propose a strategy that utilizes titanium-vacancy-regulated electronic properties of single atoms and defective support (Pt1/d-TiO2) to facilitate electron transfer from edge-share O atoms (OTi) to adjacent Pt single atoms. This leads to the formation of low-valence Pt and unsaturated-charge OTi sites, which causes the catalytic reaction to follow a synergistic mechanism. Specifically, experimental and theoretical analyses demonstrate that low-valence Pt sites finely tune the adsorption of H2 molecules, consequently lowering the dissociation energy from 0.15 to as low as 0.01 eV. Moreover, using quasi-in situ spectroscopy, we clearly observe NO molecules being adsorbed on interfacial oxygen sites of a defective support. Then, the bond energy of the N-O bond is weakened through an electron acceptance-donation mechanism between unsaturated-charge OTi sites and NO, thereby facilitating NO activation. The designed single-atom catalysts with synergistic sites exhibit unmatched activity at low temperatures (above 90% NOx conversion at 100 °C), along with higher turnover frequency value (0.74 s-1) and superior stability, making them potentially suitable for industrial applications.
Collapse
Affiliation(s)
- Guoquan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - He Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Zhang T, Zhang Z, Luo D, Xie T, Zheng WT, Hu Z, Yang RT. Photothermal Synergism on Pd/TiO 2 Catalysts with Varied TiO 2 Crystalline Phases for NO x Removal via H 2-SCR: A Transient DRIFTS Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenyu Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wen-Tao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
3
|
Lott P, Wagner U, Koch T, Deutschmann O. Der Wasserstoffmotor – Chancen und Herausforderungen auf dem Weg zu einer dekarbonisierten Mobilität. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick Lott
- Karlsruher Institut für Technologie Institut für Technische Chemie und Polymerchemie (ITCP) Engesserstraße 20 76131 Karlsruhe Deutschland
| | - Uwe Wagner
- Karlsruher Institut für Technologie (KIT) Institut für Kolbenmaschinen (IFKM) Rintheimer Querallee 2 76131 Karlsruhe Deutschland
| | - Thomas Koch
- Karlsruher Institut für Technologie (KIT) Institut für Kolbenmaschinen (IFKM) Rintheimer Querallee 2 76131 Karlsruhe Deutschland
| | - Olaf Deutschmann
- Karlsruher Institut für Technologie Institut für Technische Chemie und Polymerchemie (ITCP) Engesserstraße 20 76131 Karlsruhe Deutschland
| |
Collapse
|
4
|
Ma L, Ma C, Xie T, Cao L, Yang J. SO 2 Resisting Pd-doped Pr 1-x Ce x MnO 3 Perovskites for Efficient Denitration at Low Temperature. Chem Asian J 2021; 16:530-537. [PMID: 33450118 DOI: 10.1002/asia.202001426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Indexed: 11/10/2022]
Abstract
H2 -SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-x Cex Mn1-y Pdy O3 @Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 @Ni in the presence of 4 % O2 with a GHSV of 32000 h-1 . Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2 O (8 %). Deduced from the results of XRD, Raman, XPS, and H2 -TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 . The existence of higher valence (Pd3+ and Pd4+ ) than the bivalence in Pr0.9 Ce0.1 Mn0.9 Pd0.1 O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2 -SCR through the higher utilization of Pd.
Collapse
Affiliation(s)
- Linghui Ma
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chenglong Ma
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Tianying Xie
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Limei Cao
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ji Yang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| |
Collapse
|
5
|
Xie T, Cao L, Sun W, Yang J. Methanol reforming denitration over an integrated bifunctional CuZnO x–X–MnPdO z@Ni catalyst at low temperature. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02089c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Severe conditions involved in hydrogen storage and transportation limit the practical applications of hydrogen denitration reaction.
Collapse
Affiliation(s)
- Tianying Xie
- School of Resources and Environmental Engineering
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Limei Cao
- School of Resources and Environmental Engineering
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Wei Sun
- College of Ecology and Environment
- Hainan University
- Haikou 570228
- P.R. China
| | - Ji Yang
- School of Resources and Environmental Engineering
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
6
|
Zhang H, Wang Z, Ma C, Zhou Z, Cao L, Yang J. Regulating the Coordination of Co sites in Co 3 O 4 /MnO 2 Compounding for Facilitated Oxygen Reduction Reaction. CHEMSUSCHEM 2020; 13:6613-6620. [PMID: 33098252 DOI: 10.1002/cssc.202002110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Binary transition metal oxides as a promising oxygen reduction reaction (ORR) catalyst have received significant attention. However, their exact reaction mechanisms are often too complex to be discussed. Herein, novel Co-Mn composites with a well-defined nanostructure were developed for understanding the role of each component. The growth pattern of cobalt oxide and the effects of the coordination environment of Co sites during growth on the overall activity were investigated. Based on experimental and density functional theory studies, it was found that the decaying coordination number directly affected the expression of crystal planes of cobalt oxide, which further had a great influence upon limiting current density of Co-Mn catalysts. The cuboid-Co/Mn catalyst exhibited outstanding limiting current density and showed good stability, related to more highly active (110) planes exposed in Co3 O4 . These provided many references for the preparation of related nonprecious catalysts in various domains.
Collapse
Affiliation(s)
- Hao Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chenglong Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenhua Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
7
|
Hu Z, Yang RT. 110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|