1
|
Nosova EV, Lipunova GN, Permyakova YV, Charushin VN. Quinazolines annelated at the N(3)-C(4) bond: Synthesis and biological activity. Eur J Med Chem 2024; 271:116411. [PMID: 38669910 DOI: 10.1016/j.ejmech.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
This review covers article and patent data obtained mostly within the period 2013-2023 on the synthesis and biological activity of quinazolines [c]-annelated by five- and six-membered heterocycles. Pyrazolo-, benzimidazo-, triazolo- and pyrimido- [c]quinazoline systems have shown multiple potential activities against numerous targets. We highlight that most research efforts are directed to design of anticancer and antibacterial agents of azolo[c]quinazoline nature. This review emphases both on the medicinal chemistry aspects of pyrrolo[c]-, azolo[c]- and azino[c]quinazolines and comprehensive synthetic strategies of quinazolines annelated at N(3)-C(4) bond in the perspective of drug development and discovery.
Collapse
Affiliation(s)
- Emiliya V Nosova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Galina N Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Yulia V Permyakova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia
| | - Valery N Charushin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia
| |
Collapse
|
2
|
Sawant DM, Joshi G, Ansari AJ. Nitrene-transfer from azides to isocyanides: Unveiling its versatility as a promising building block for the synthesis of bioactive heterocycles. iScience 2024; 27:109311. [PMID: 38510111 PMCID: PMC10951658 DOI: 10.1016/j.isci.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cross-coupling azide and isocyanide have recently gained recognition as ideal methods for efficiently synthesizing asymmetric carbodiimides. This reaction exhibits high reaction rates, efficiency, and favorable atom/step/redox economy. It enables the nitrene-transfer process, facilitating the formation of C-N bonds and providing a direct and cost-effective synthetic strategy for generating diverse carbodiimides. These carbodiimides are highly reactive compounds that can undergo in-situ transformations into various functional groups and organic compounds, including heterocycles. Developing one-pot and tandem processes in this field has significantly contributed to advancements in organic chemistry. Moreover, the demonstrated utility of these architectural motifs extends to areas such as chemical biology and medicinal chemistry, further highlighting their potential in various scientific applications.
Collapse
Affiliation(s)
- Devesh M. Sawant
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Arshad J. Ansari
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
3
|
Abdullah S, Ganguly S. An overview of imidazole and its analogues as potent anticancer agents. Future Med Chem 2023; 15:1621-1646. [PMID: 37727960 DOI: 10.4155/fmc-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.
Collapse
Affiliation(s)
- Salik Abdullah
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| |
Collapse
|
4
|
Qiu LY, Ren N, Deng Z, Chen J, Deng H, Zhang H, Cao W, Tang XJ. The Practical Access to Fluoroalkylated Pyrazolo[1,5- c]quinazolines by Fluoroalkyl-Promoted [3 + 2] Cycloaddition Reaction. J Org Chem 2023; 88:10180-10189. [PMID: 37410945 DOI: 10.1021/acs.joc.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The efficient synthesis of fluoroalkylated pyrazolo[1,5-c]quinazolines by reactions of 3-diazoindolin-2-ones with methyl β-fluoroalkylpropionates has been achieved. This protocol affords two regioisomers of fluoroalkylated pyrazolo[1,5-c]quinazolines with excellent yields in total. The dipolarophilicity of methyl β-fluoroalkylpropionates enhanced by perfluoroalkyl groups is crucial for the high efficiency of this [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Liu-Yan Qiu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Nan Ren
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Zhen Deng
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Jie Chen
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Hongmei Deng
- Laboratory for Microstructures and Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, China
| | - Hui Zhang
- Laboratory for Microstructures and Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, China
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Jun Tang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Chang W, Lei Z, Yang Y, Dai S, Feng J, Yang J, Zhang Z. Tandem Reaction of Azide with Isonitrile and TMSC nF m(H): Access to N-Functionalized C-Fluoroalkyl Amidine. Org Lett 2023; 25:1392-1396. [PMID: 36861965 DOI: 10.1021/acs.orglett.3c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
N-Functionalized C-fluoroalkyl amidines are attracting great attention due to their potential in pharmaceuticals. Herein, we report a Pd-catalyzed tandem reaction of azide with isonitrile and fluoroalkylsilane via a carbodiimide intermediate, providing facile access to N-functionalized C-fluoroalkyl amidines. This protocol offers an approach toward not only N-sulphonyl, N-phosphoryl, N-acyl, and N-aryl but also C-CF3, C2F5, and CF2H amidines with a broad substrate scope. The accomplishment of further transformations and Celebrex derivatization in gram scale and biological evaluation reveals the important utility of this strategy.
Collapse
Affiliation(s)
- Wenxu Chang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zizhen Lei
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Yi Yang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Sibo Dai
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jiyao Feng
- College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jun Yang
- College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenhua Zhang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
6
|
Ludhiadch A, Yadav UP, Munshi A. Currently available COVID-19 management options. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:111-124. [DOI: 10.1016/b978-0-323-91794-0.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
Affiliation(s)
- T R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - D S Verdoorn
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - P Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - E Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - B U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R V A Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
| |
Collapse
|
8
|
Haider K, Das S, Joseph A, Yar MS. An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res 2022; 83:859-890. [PMID: 35297084 DOI: 10.1002/ddr.21925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Centre for Excellence for Biomaterials Engineering, Faculty of Applied Sciences, AIMST University, Malaysia
| |
Collapse
|
9
|
Zhang Z, Tan P, Chang W, Zhang Z. Transition‐Metal‐Catalyzed Cross‐Coupling and Sequential Reactions of Azides with Isocyanides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Pengpeng Tan
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Wenxu Chang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| | - Zhenhua Zhang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
10
|
Ren Z, He P, Xu M, Chen A, Qiu J, Zu M, Zhang Y, Wang J. An Efficient Protocol for the Synthesis of Pyrazolo[1,5-c]quinazolines by a Staudinger–Aza-Wittig–Dehydroaromatization Sequence. Synlett 2021. [DOI: 10.1055/a-1579-1692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe one-pot synthesis of azide-substituted dihydropyrazoles in isopropanol was performed by using chalcones, hydrazine hydrate, and an acyl chloride at 0 ℃. Subsequent Staudinger–aza-Wittig–dehydroaromatization reactions of the products with methyl(diphenyl)phosphine were also investigated for further application in the construction of pyrazolo[1,5-c]quinazolines.
Collapse
|
11
|
Nia RH, Mamaghani M, Tavakoli F. Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Curr Org Synth 2021; 19:COS-EPUB-117839. [PMID: 34515006 DOI: 10.2174/1570179418666210910105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020. Conclusion: The present review addresses some of the important reported studies on multi-component synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as co-catalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.
Collapse
Affiliation(s)
- Roghayeh Hossein Nia
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| |
Collapse
|
12
|
Li Q, Liu R, Wei Y, Shi M. Silver/Rhodium Relay Catalysis Enables C−H Functionalization of
In Situ
Generated Isoquinolines with Sulfoxonium Ylides: Construction of Hexahydrodibenzo[
a
,
g
]quinolizine Scaffolds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Quanzhe Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering East China University of Science and Technology Meilong Road No.130 Shanghai 200237 People's Republic of China
| | - Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering East China University of Science and Technology Meilong Road No.130 Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
13
|
Kumar M, Joshi G, Arora S, Singh T, Biswas S, Sharma N, Bhat ZR, Tikoo K, Singh S, Kumar R. Design and Synthesis of Non-Covalent Imidazo[1,2- a]quinoxaline-Based Inhibitors of EGFR and Their Anti-Cancer Assessment. Molecules 2021; 26:1490. [PMID: 33803355 PMCID: PMC7967119 DOI: 10.3390/molecules26051490] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
- School of Pharmacy, Graphic Era Hill University, Dehradun 248171, Uttarakhand, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India; (T.S.); (S.S.)
| | - Sajal Biswas
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Zahid Rafiq Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India; (T.S.); (S.S.)
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| |
Collapse
|
14
|
Joshi G, Sharma M, Kalra S, Gavande NS, Singh S, Kumar R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg Chem 2021; 107:104620. [PMID: 33454509 DOI: 10.1016/j.bioorg.2020.104620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Xanthine oxidase (XO) has been primarily targeted for the development of anti-hyperuriciemic /anti-gout agents as it catalyzes the conversion of xanthine and hypoxanthine into uric acid. XO overexpression in various cancer is very well correlated due to reactive oxygen species (ROS) production and metabolic activation of carcinogenic substances during the catalysis. Herein, we report the design and synthesis of a series of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehyde derivatives (2a-2x) as xanthine oxidase inhibitors (XOIs). A docking model was developed for the prediction of XO inhibitory activity of our novel compounds. Furthermore, our compounds anticancer activity results in low XO expression and XO-harboring cancer cells both in 2D and 3D-culture models are presented and discussed. Among the array of synthesized compounds, 2b and 2m emerged as potent XO inhibitors having IC50 values of 9.32 ± 0.45 µM and 10.03 ± 0.43 µM, respectively. Both compounds induced apoptosis, halted the cell cycle progression at the G1 phase, elevated ROS levels, altered mitochondrial membrane potential, and inhibited antioxidant enzymes. The levels of miRNA and expression of redox sensors in cells were also altered due to increase oxidative stress induced by our compounds. Compounds 2b and 2m hold a great promise for further development of XOIs for the treatment of XO-harboring tumors.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Manisha Sharma
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Sourav Kalra
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India.
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
15
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
16
|
Liang YX, Yang M, He BW, Zhao YL. Silver-Catalyzed Cascade Cyclization Reaction of Isocyanides with Sulfoxonium Ylides: Synthesis of 3-Aminofurans and 4-Aminoquinolines. Org Lett 2020; 22:7640-7644. [DOI: 10.1021/acs.orglett.0c02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bo-Wen He
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
17
|
Kalra S, Joshi G, Kumar M, Arora S, Kaur H, Singh S, Munshi A, Kumar R. Anticancer potential of some imidazole and fused imidazole derivatives: exploring the mechanism via epidermal growth factor receptor (EGFR) inhibition. RSC Med Chem 2020; 11:923-939. [PMID: 33479688 DOI: 10.1039/d0md00146e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Imidazole-based epidermal growth factor receptor (EGFR) inhibitors were computationally designed and synthesized. All the compounds were assessed for their anti-proliferative activity against five cancer cell lines, viz., MDA-MB-231 (breast), T47D (breast) and MCF-7 (breast), A549 (lung) and HT-29 (colorectal). Compounds 2c and 2d emerged as better anticancer molecules with no toxicity towards normal cells. 2c and 2d inhibited EGFR enzymatic activity in vitro with IC50 values of 617.33 ± 0.04 nM and 710 ± 0.05 nM, respectively. In order to further improve the potency, we explored an unoccupied area of the ATP binding domain of EGFR and analysed an in silico interaction model of 2c and 2d-EGFR complexes that guided and allowed substitution of the 4-fluorophenyl ring (2c and 2d) with 4-(4-methylpiperazinyl)-3-nitrophenyl at the N-9 position, resulting in compound 3c with a better binding score and potent EGFR inhibitory activity (IC50: 236.38 ± 0.04 nM), which was comparable to the positive control erlotinib (239.91 ± 0.05 nM). 3c exhibited a great improvement in anticancer potency with inhibition of cell growth of all cancer cell lines at very low micromolar concentrations (IC50 = 1.98 to 4.07 μM). Further investigation revealed that 3c also induced an increase in ROS levels in cancer cells in a mitochondrial-independent manner and halted the cell cycle at the sub-G1 phase.
Collapse
Affiliation(s)
- Sourav Kalra
- Department of Human Genetics and Molecular Medicine , School of Health Sciences , Central University of Punjab , Bathinda , 151001 , India . ;
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products , School of Basic and Applied Sciences , Central University of Punjab , Bathinda , 151001 , India . ,
| | - Manvendra Kumar
- Department of Pharmaceutical Sciences and Natural Products , School of Basic and Applied Sciences , Central University of Punjab , Bathinda , 151001 , India . ,
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products , School of Basic and Applied Sciences , Central University of Punjab , Bathinda , 151001 , India . ,
| | - Harsimrat Kaur
- Desh Bhagat Dental College and Hospital , Mandi Gobindgarh , India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine , School of Health Sciences , Central University of Punjab , Bathinda , 151001 , India . ;
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine , School of Health Sciences , Central University of Punjab , Bathinda , 151001 , India . ;
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products , School of Basic and Applied Sciences , Central University of Punjab , Bathinda , 151001 , India . ,
| |
Collapse
|
18
|
Liu L, Li L, Mao S, Wang X, Zhou MD, Zhao YL, Wang H. Synthesis of pyrazolo[1,5-c]quinazoline derivatives through the copper-catalyzed domino reaction of o-alkenyl aromatic isocyanides with diazo compounds. Chem Commun (Camb) 2020; 56:7665-7668. [DOI: 10.1039/d0cc00594k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various o-alkenyl aromatic isocyanides were prepared from readily available reactants for their double annulation with diazo compounds for a one-pot synthesis of pyrazolo[1,5-c]quinazolines under mild reaction conditions.
Collapse
Affiliation(s)
- Lu Liu
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Lei Li
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Shukuan Mao
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Yu-long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| |
Collapse
|
19
|
Tao LY, Wei Y, Shi M. Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes via a triplet biradical mediated process. Org Chem Front 2020. [DOI: 10.1039/d0qo00878h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A triplet biradical mediated dimerization–cyclization reaction of isocyanoaryl-tethered alkylidenecyclobutanes to construct macrocyclic skeletons including dihydroquinoline and quinoline units has been reported.
Collapse
Affiliation(s)
- Le-Yi Tao
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
20
|
Joshi G, Kalra S, Yadav UP, Sharma P, Singh PK, Amrutkar S, Ansari AJ, Kumar S, Sharon A, Sharma S, Sawant DM, Banerjee UC, Singh S, Kumar R. E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase. Bioorg Chem 2020; 94:103409. [DOI: 10.1016/j.bioorg.2019.103409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
|
21
|
Xia C, Wang DC, Qu GR, Guo HM. Palladium-catalyzed enantioselective [5 + 4] annulation of ortho-quinone methides and vinylethylene carbonates. Org Chem Front 2020. [DOI: 10.1039/d0qo00128g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Highly enantioselective [5 + 4] annulations of ortho-quinone methides with vinylethylene carbonates are enabled by asymmetric palladium catalysis for the synthesis of chiral nine-membered benzo-heterocycles.
Collapse
Affiliation(s)
- Chao Xia
- School of Environment
- Henan Normal University
- Xinxiang
- China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- China
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation
| |
Collapse
|
22
|
Exploration of Pd-catalysed four-component tandem reaction for one-pot assembly of pyrazolo[1,5-c]quinazolines as potential EGFR inhibitors. Bioorg Chem 2019; 93:103314. [DOI: 10.1016/j.bioorg.2019.103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
23
|
Zhou C, Jiang J, Wang J. Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Org Lett 2019; 21:4971-4975. [DOI: 10.1021/acs.orglett.9b01456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
24
|
Gabriele B, Mancuso R, Veltri L, Ziccarelli I, Della Ca' N. Palladium-Catalyzed Double Cyclization Processes Leading to Polycyclic Heterocycles: Recent Advances. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry; Department of Chemistry and Chemical Technologies; University of Calabria;; Via Pietro Bucci 12 C 87036 Arcavacata di Rende (CS) Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry; Department of Chemistry and Chemical Technologies; University of Calabria;; Via Pietro Bucci 12 C 87036 Arcavacata di Rende (CS) Italy
| | - Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry; Department of Chemistry and Chemical Technologies; University of Calabria;; Via Pietro Bucci 12 C 87036 Arcavacata di Rende (CS) Italy
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry; Department of Chemistry and Chemical Technologies; University of Calabria;; Via Pietro Bucci 12 C 87036 Arcavacata di Rende (CS) Italy
| | - Nicola Della Ca'
- Department of Chemistry; Life Sciences and Environmental Sustainability; University of Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
25
|
Ansari AJ, Joshi G, Sharma P, Maurya AK, Metre RK, Agnihotri VK, Chandaluri CG, Kumar R, Singh S, Sawant DM. Pd-Catalyzed Four-Component Sequential Reaction Delivers a Modular Fluorophore Platform for Cell Imaging. J Org Chem 2019; 84:3817-3825. [DOI: 10.1021/acs.joc.8b02845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arshad J. Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan NH-8, Bandarsindri, Ajmer 305817, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Antim K. Maurya
- Natural Product Chemistry and Process Development Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India
| | - Ramesh K. Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur, Rajasthan 342037, India
| | - Vijai K. Agnihotri
- Natural Product Chemistry and Process Development Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India
| | - Chanchayya Gupta Chandaluri
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan NH-8, Bandarsindri, Ajmer 305817, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Devesh M. Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan NH-8, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
26
|
Pathare RS, Maurya AK, Kumari A, Agnihotri VK, Verma VP, Sawant DM. Synthesis of quinazoline-3-oxides via a Pd(ii) catalyzed azide-isocyanide coupling/cyclocondensation reaction. Org Biomol Chem 2019; 17:363-368. [PMID: 30556560 DOI: 10.1039/c8ob02627k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient protocol concerning palladium catalyzing the three-component reaction of 2-azidobenzaldehyde, isocyanide, and hydroxylamine hydrochloride is developed. This method allows the rapid elaboration of quinazoline 3-oxides in a one-pot fashion. The 3-CR mainly involves concatenation of azide-isocyanide denitrogenative coupling, condensation with hydroxylamine and 6-exo-dig cyclization. The salient features of the methodology are operational simplicity, use of milder reaction conditions, being devoid of any additives such as oxidants (redox neutral) or base, and releasing N2 and H2O as the byproducts.
Collapse
Affiliation(s)
- Ramdas S Pathare
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer-305817, Rajasthan, India.
| | | | | | | | | | | |
Collapse
|
27
|
Gupta GR, Shah J, Vadagaonkar KS, Lavekar AG, Kapdi AR. Hetero-bimetallic cooperative catalysis for the synthesis of heteroarenes. Org Biomol Chem 2019; 17:7596-7631. [DOI: 10.1039/c9ob01152h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering the synthesis of 5- and 6-membered as well as condensed heteroarenes, focussing on the combinations in cooperative catalytic systems in strategies used to achieve selectivity and also highlights the mode of action for the cooperative catalysis leading to the synthesis of commercially and biologically relevant heteroarenes.
Collapse
Affiliation(s)
- Gaurav R. Gupta
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Jagrut Shah
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | | - Aditya G. Lavekar
- Former Research Fellow
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
28
|
Ansari AJ, Pathare RS, Kumawat A, Maurya AK, Verma S, Agnihotri VK, Joshi R, Metre RK, Sharon A, Pardasani RT, Sawant DM. A diversity-oriented synthesis of polyheterocycles via the cyclocondensation of azomethine imine. NEW J CHEM 2019. [DOI: 10.1039/c9nj02874a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-Catalyzed sequential reactions to afford skeletally diverse molecules are described.
Collapse
|
29
|
Joshi G, Wani AA, Sharma S, Bhutani P, Bharatam PV, Paul AT, Kumar R. Unanticipated Cleavage of 2-Nitrophenyl-Substituted N-Formyl Pyrazolines under Bechamp Conditions: Unveiling the Synthesis of 2-Aryl Quinolines and Their Mechanistic Exploration via DFT Studies. ACS OMEGA 2018; 3:18783-18790. [PMID: 31458441 PMCID: PMC6643473 DOI: 10.1021/acsomega.8b02682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2018] [Indexed: 05/05/2023]
Abstract
We herein report for the first time an unusual decomposition of 2-nitrophenyl-substituted N-formyl pyrazolines under Bechamp reduction condition employed to yield 2-aryl quinolines exclusively instead of pyrazolo[1,5-c]quinazolines. The reaction investigation suggests acid-mediated cleavage of 1 followed by a retro-Michael addition, and a subsequent in situ intramolecular reductive cyclization through a modified Friedlander mechanism afforded 2-aryl quinolines (2) in good yields. The proposed mechanistic pathways were supported via experimental evidence and density functional theory studies. B3LYP/6-31+G(d) analysis indicated the involvement of trans-2-hydroxyaminochalcone as a key intermediate and its isomerization and cyclization, leading to unusual product formation.
Collapse
Affiliation(s)
- Gaurav Joshi
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Aabid Abdullah Wani
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali 160062, India
| | - Sahil Sharma
- Department
of Pharmaceutical Chemistry, ISF College
of Pharmacy, Moga 142001, India
| | - Priyadeep Bhutani
- Laboratory
of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani Campus, Pilani 333031, Rajasthan, India
| | - Prasad V. Bharatam
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali 160062, India
| | - Atish T. Paul
- Laboratory
of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani Campus, Pilani 333031, Rajasthan, India
| | - Raj Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
- Department
of Pharmaceutical Chemistry, ISF College
of Pharmacy, Moga 142001, India
- E-mail: ,
| |
Collapse
|