1
|
Integrating amino acid oxidase with photoresponsive probe: A fast quantitative readout platform of amino acid enantiomers. Talanta 2021; 224:121894. [PMID: 33379102 DOI: 10.1016/j.talanta.2020.121894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Low-cost, high-throughput, broadly useful photoresponsive enantiomeric excess (ee) sensing of amino acids remains challenging to date. Herein, based on the selective oxidation reaction of amino acid oxidase (AAO) to amino acid enantiomers (D/L-AA) and the oxidation reaction of substrate (H2O2) with aromatic boronic ester, we put forward a photoresponsive strategy for the determination of D/L-AA at a certain concentration. In this scheme, the substrate H2O2 produced by the enzyme-catalyzed reaction was determined by sensitive fluorescent and colorimetric response of ethyl-3-(3-(benzothiazol-2-yl)-5-methyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)-2-cyanoacrylate (HBT-PB) to reflect the enantiomeric content at a certain concentration. The photoresponsive probe HBT-PB was readily available and inexpensive with sensitive long-wavelength red fluorescence and colorimetric light response to H2O2, the detection limit (LOD) was estimated as 2.91 μM. The operation of the sensing method was simple and data collection and processing are straightforward. The practicability of the scheme was favorably confirmed by accurate and scientific analysis of methionine and Dopa samples. As a result, the scheme was not only suitable for high-throughput screening but also adaptable to low-cost and sensitive RGB colorimetric analysis platform (LOD of methionine and Dopa was calculated as 9.23 μM and 8.34 μM respectively) with modern plate readers, and possessed extremely high enantioselectivity and wide applicability which benefited from the specificity and efficiency of enzyme catalytic reaction.
Collapse
|
2
|
Gupta R, Gonnade RG, Bedekar AV. Effect of Substituent of Roof Shape Amines on the Molecular Recognition of Optically Active Acids by NMR Spectroscopy. ChemistrySelect 2020. [DOI: 10.1002/slct.202003338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Riddhi Gupta
- Department of Chemistry Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara 390 002 India
| | - Rajesh G. Gonnade
- Center for Materials Characterization CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
| | - Ashutosh V. Bedekar
- Department of Chemistry Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara 390 002 India
| |
Collapse
|
3
|
Li GW, Wang XJ, Cui DD, Zhang YF, Xu RY, Shi SH, Liu LT, Wang MC, Liu HM, Lei XX. Azaheterocyclic diphenylmethanol chiral solvating agents for the NMR chiral discrimination of alpha-substituted carboxylic acids. RSC Adv 2020; 10:34605-34611. [PMID: 35514411 PMCID: PMC9056771 DOI: 10.1039/d0ra06312f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
A series of small-membered heterocycle probes, so-called azaheterocycle-containing diphenylmethanol chiral solvating agents (CSAs), have been developed for NMR enantiodiscrimination. These chiral sensors were readily synthesized were inexpensive and efficiently used for the chiral analysis of alpha-substituted carboxylic acids. The sensing method was operationally simple and the processing was straightforward. Notably, we propose (S)-aziridinyl diphenylmethanol as a promising CSA, which has excellent chiral discriminating properties and offers multiple detectable possibilities pertaining to the 1H NMR signals of diagnostic split protons (including 25 examples, up to 0.194 ppm, 77.6 Hz). Its ability to detect the molecular recognition of fluorinated carboxylic acids were further investigated, with a good level of discrimination via the 19F NMR spectroscopic analysis. In addition, an accurate enantiomeric excess (ee) analysis of the p-methoxyl-mandelic acid with different optical compositions have been calculated based on the integration of well-separated proton signals.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Dan-Dan Cui
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Yu-Fei Zhang
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Rong-Yao Xu
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Min-Can Wang
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xin-Xiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 P. R. China
| |
Collapse
|
4
|
Zhu F, Wang J, Xie S, Zhu Y, Wang L, Xu J, Liao S, Ren J, Liu Q, Yang H, Chen X. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition. Anal Chem 2020; 92:12040-12048. [DOI: 10.1021/acs.analchem.0c02668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jiwei Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
5
|
Jang S, Kim H. Chiral 1H NMR Analysis of Carbonyl Compounds Enabled by Cationic Cobalt Complex. Org Lett 2020; 22:4185-4189. [DOI: 10.1021/acs.orglett.0c01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sumin Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Wang T, Liu Q, Wang M, Zhou J, Yang M, Chen G, Tang F, Hatzakis E, Zhang L. Quantitative Measurement of a Chiral Drug in a Complex Matrix: A J-Compensated Quantitative HSQC NMR Method. Anal Chem 2020; 92:3636-3642. [DOI: 10.1021/acs.analchem.9b04591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Quanhui Liu
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Mengrui Yang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Gui Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P.R. China
| | - Fenfen Tang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P.R. China
| |
Collapse
|
7
|
Jang S, Kim H. A Gallium-based Chiral Solvating Agent Enables the Use of 1H NMR Spectroscopy to Differentiate Chiral Alcohols. iScience 2019; 19:425-435. [PMID: 31421597 PMCID: PMC6704394 DOI: 10.1016/j.isci.2019.07.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
In situ, direct 1H NMR chiral analysis by using chiral solvating agents is a convenient and efficient analytical technique. Here we developed a Ga-based chiral anionic metal complex for 1H NMR chiral analysis of alcohols. Utilizing the optimal pKa value, the Ga complex was able to differentiate 1H NMR signals of each (R)- and (S)-enantiomer of alcohols, measured at room temperature. This direct 1H NMR chiral analysis of alcohols was used to rapidly determine enantiomeric excess and conversion in a kinetic resolution and an asymmetric synthesis.
Collapse
Affiliation(s)
- Sumin Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Khanvilkar AN, Samanta SG, Bedekar AV. Applications of chiral naphthyloxycyclohexanols in deracemization of α-substituted carboxylic acids by dynamic thermodynamic resolution. Org Biomol Chem 2019; 17:2670-2683. [DOI: 10.1039/c8ob02896f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of chiral naphthyloxycyclohexanols and their applications in the preparation of optically pure α-substituted carboxylic acids by dynamic thermodynamic resolution.
Collapse
Affiliation(s)
- Aditya N. Khanvilkar
- Department of Chemistry
- Faculty of Science
- The Maharaja Sayajirao University of Baroda
- Vadodara 390 002
- India
| | - Sudeep G. Samanta
- Department of Chemistry
- Faculty of Science
- The Maharaja Sayajirao University of Baroda
- Vadodara 390 002
- India
| | - Ashutosh V. Bedekar
- Department of Chemistry
- Faculty of Science
- The Maharaja Sayajirao University of Baroda
- Vadodara 390 002
- India
| |
Collapse
|