1
|
Yan Z, Xiao P, Ji P, Su R, Ren Z, Xu L, Qiu X, Li D. Enhanced breast cancer therapy using multifunctional lipid-coated nanoparticles combining curcumin chemotherapy and nitric oxide gas delivery. Sci Rep 2024; 14:18107. [PMID: 39103425 PMCID: PMC11300860 DOI: 10.1038/s41598-024-69229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The limitations associated with conventional cancer treatment modalities, particularly for breast cancer, underscore the imperative for developing safer and more productive drug delivery systems. A promising strategy that has emerged is the combination of chemotherapy with gas therapy. We synthesized curcumin-loaded amorphous calcium carbonate nanoparticles (Cur-CaCO3) via a gas diffusion reaction in the present study. Subsequently, a "one-step" ethanol injection method was employed to fabricate lipid-coated calcium carbonate nanoparticles (Cur-CaCO3@LA-Lip) loaded with L-arginine, aimed at harnessing the synergistic effects of chemotherapy and nitric oxide to enhance antitumor efficacy. Transmission electron microscopy analysis revealed that Cur-CaCO3@LA-Lip nanoparticles were subspherical with a distinct lipid layer encapsulating the periphery. Fourier transform infrared spectroscopy, X-ray powder diffraction, and differential scanning calorimetry results confirmed the successful synthesis of Cur-CaCO3@LA-Lip. The nanoparticles exhibited significant drug loading capacities of 8.89% for curcumin and 3.1% for L-arginine. In vitro and in vivo assessments demonstrated that Cur-CaCO3@LA-Lip nanoparticles facilitated sustained release of curcumin and exhibited high cellular uptake, substantial tumor accumulation, and excellent biocompatibility. Additionally, the nanoparticles showed robust cytotoxicity and potent antitumor efficacy, suggesting their potential as a formidable candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Zhirong Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| | - Peihan Xiao
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Rongjian Su
- Institute of Life Sciences, Jinzhou Medical University, Jin Zhou, People's Republic of China
| | - Zhenkun Ren
- Institute of Life Sciences, Jinzhou Medical University, Jin Zhou, People's Republic of China
| | - Li Xu
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, 110000, People's Republic of China
| | - Xun Qiu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Dan Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Li C, Cai Y, Luo L, Tian G, Wang X, Yan A, Wang L, Wu S, Wu Z, Zhang T, Chen W, Zhang Z. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024; 27:110404. [PMID: 39092176 PMCID: PMC11292558 DOI: 10.1016/j.isci.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Cathelicidins, a major class of antimicrobial peptides (AMPs), hold considerable potential for antimicrobial drug development. In the present study, we identified a novel cathelicidin AMP (TC-33) derived from the Chinese tree shrew. Despite TC-33 demonstrating weak antimicrobial activity, the novel peptide TC-14, developed based on its active region, exhibited a 432-fold increase in antimicrobial activity over the parent peptide. Structural analysis revealed that TC-14 adopted an amphipathic α-helical conformation. The bactericidal mechanism of TC-14 involved targeting and disrupting the bacterial membrane, leading to rapid membrane permeabilization and rupture. Furthermore, TC-14 exhibited a high-safety profile, as evidenced by the absence of cytotoxic and hemolytic activities, as well as high biocompatibility and safety in vivo. Of note, its potent antimicrobial activity provided significant protection in a murine model of skin infection. Overall, this study presents TC-14 as a promising drug candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Lin Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
3
|
Alves PM, Barrias CC, Gomes P, Martins MCL. How can biomaterial-conjugated antimicrobial peptides fight bacteria and be protected from degradation? Acta Biomater 2024; 181:98-116. [PMID: 38697382 DOI: 10.1016/j.actbio.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.
Collapse
Affiliation(s)
- Pedro M Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Liu H, Wen Z, Liu Z, Yang Y, Wang H, Xia X, Ye J, Liu Y. Unlocking the potential of amorphous calcium carbonate: A star ascending in the realm of biomedical application. Acta Pharm Sin B 2024; 14:602-622. [PMID: 38322345 PMCID: PMC10840486 DOI: 10.1016/j.apsb.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 02/08/2024] Open
Abstract
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Xue K, Li YJ, Ma TH, Cui LY, Liu CB, Zou YH, Li SQ, Zhang F, Zeng RC. In vitro corrosion resistance and dual antibacterial ability of curcumin loaded composite coatings on AZ31 alloy: Effect of amorphous calcium carbonate. J Colloid Interface Sci 2023; 649:867-879. [PMID: 37390534 DOI: 10.1016/j.jcis.2023.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Rapid corrosion and bacterial infection are obstacles to put into use biodegradable magnesium (Mg) alloy as biomedical materials. In this research, an amorphous calcium carbonate (ACC)@curcumin (Cur) loaded poly-methyltrimethoxysilane (PMTMS) coating prepared by self-assembly method on micro-arc oxidation (MAO) coated Mg alloy has been proposed. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are adopted to analyze the morphology and composition of the obtained coatings. The corrosion behaviour of the coatings is estimated by hydrogen evolution and electrochemical tests. The spread plate method without or with 808 nm near-infrared irradiation is applied to evaluate the antimicrobial and photothermal antimicrobial ability of the coatings. Cytotoxicity of the samples is tested by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di- phenytetrazoliumromide (MTT) and live/dead assay culturing with MC3T3-E1 cells. Results show that the MAO/ACC@Cur-PMTMS coating exhibited favourable corrosion resistance, dual antibacterial ability, and good biocompatibility. Cur was employed as an antibacterial agent and photosensitizer for photothermal therapy. The core of ACC significantly improved the loading of Cur and the deposition of hydroxyapatite corrosion products during degradation, which greatly promoted the long-term corrosion resistance and antibacterial activity of Mg alloys as biomedical materials.
Collapse
Affiliation(s)
- Kui Xue
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan-Jin Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tian-Hao Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Cheng-Bao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yu-Hong Zou
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fen Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Carrozza D, Malavasi G, Ferrari E. Very Large Pores Mesoporous Silica as New Candidate for Delivery of Big Therapeutics Molecules, Such as Pharmaceutical Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114151. [PMID: 37297286 DOI: 10.3390/ma16114151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The synthesis of a scaffold that can accommodate big molecules with a pharmaceutical role is important to shield them and maintain their biological activity. In this field, silica particles with large pores (LPMS) are innovative supports. Large pores allow for the loading of bioactive molecules inside the structure and contemporarily their stabilization and protection. These purposes cannot be achieved using classical mesoporous silica (MS, pore size 2-5 nm), because their pores are not big enough and pore blocking occurs. LPMSs with different porous structures are synthesized starting from an acidic water solution of tetraethyl orthosilicate reacting with pore agents (Pluronic® F127 and mesitylene), performing hydrothermal and microwave-assisted reactions. Time and surfactant optimization were performed. Loading tests were conducted using Nisin as a reference molecule (polycyclic antibacterial peptide, with dimensions of 4-6 nm); UV-Vis analyses on loading solutions were performed. For LPMSs, a significantly higher loading efficiency (LE%) was registered. Other analyses (Elemental Analysis, Thermogravimetric Analysis and UV-Vis) confirmed the presence of Nisin in all the structures and its stability when loaded on them. LPMSs showed a lower decrease in specific surface area if compared to MS; in terms of the difference in LE% between samples, it is explained considering the filling of pores for LPMSs, a phenomenon that is not allowed for MSs. Release studies in simulated body fluid highlight, only for LPMSs, a controlled release, considering the longer time scale of release. Scanning Electron Microscopy images acquired before and after release tests shows the LPMSs' maintenance of the structure, demonstrating strength and mechanical resistance of structures. In conclusion, LPMSs were synthesized, performing time and surfactant optimization. LPMSs showed better loading and releasing properties with respect to classical MS. All collected data confirm a pore blocking for MS and an in-pore loading for LPMS.
Collapse
Affiliation(s)
- Debora Carrozza
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Gianluca Malavasi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
7
|
Yu J, Wang L, Xie X, Zhu W, Lei Z, Lv L, Yu H, Xu J, Ren J. Multifunctional Nanoparticles Codelivering Doxorubicin and Amorphous Calcium Carbonate Preloaded with Indocyanine Green for Enhanced Chemo-Photothermal Cancer Therapy. Int J Nanomedicine 2023; 18:323-337. [PMID: 36700147 PMCID: PMC9869790 DOI: 10.2147/ijn.s394896] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Background Multifunctional stimuli-responsive nanoparticles with photothermal-chemotherapy provided a powerful tool for improving the accuracy and efficiency in the treatment of malignant tumors. Methods Herein, photosensitizer indocyanine green (ICG)-loaded amorphous calcium-carbonate (ICG@) nanoparticle was prepared by a gas diffusion reaction. Doxorubicin (DOX) and ICG@ were simultaneously encapsulated into poly(lactic-co-glycolic acid)-ss-chondroitin sulfate A (PSC) nanoparticles by a film hydration method. The obtained PSC/ICG@+DOX hybrid nanoparticles were characterized and evaluated by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The cellular uptake and cytotoxicity of PSC/ICG@+DOX nanoparticles were analyzed by confocal laser scanning microscopy (CLSM) and MTT assay in 4T1 cells. In vivo antitumor activity of the nanoparticles was evaluated in 4T1-bearing Balb/c mice. Results PSC/ICG@+DOX nanoparticles were nearly spherical in shape by TEM observation, and the diameter was 407 nm determined by DLS. Owing to calcium carbonate and disulfide bond linked copolymer, PSC/ICG@+DOX nanoparticles exhibited pH and reduction-sensitive drug release. Further, PSC/ICG@+DOX nanoparticles showed an effective photothermal effect under near-infrared (NIR) laser irradiation, and improved cellular uptake and cytotoxicity in breast cancer 4T1 cells. Importantly, PSC/ICG@+DOX nanoparticles demonstrated the most effective suppression of tumor growth in orthotopic 4T1-bearing mice among the treatment groups. In contrast with single chemotherapy or photothermal therapy, chemo-photothermal treatment by PSC/ICG@+DOX nanoparticles synergistically inhibited the growth of 4T1 cells. Conclusion This study demonstrated that PSC/ICG@+DOX nanoparticles with active targeting and stimuli-sensitivity would be a promising strategy to enhance chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, People’s Republic of China,Jiangxi Provincial Laboratory Laboratory of System Biomedicine, Jiujiang University, Jiujiang, People’s Republic of China,School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China,Correspondence: Jingmou Yu; Jin Ren, Email ;
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang, People’s Republic of China
| | - Xin Xie
- Jiangxi Provincial Laboratory Laboratory of System Biomedicine, Jiujiang University, Jiujiang, People’s Republic of China
| | - Wenjing Zhu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| | - Zhineng Lei
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| | - Linghui Lv
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| | - Hongling Yu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang, People’s Republic of China
| | - Jin Ren
- Jiangxi Provincial Laboratory Laboratory of System Biomedicine, Jiujiang University, Jiujiang, People’s Republic of China,School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| |
Collapse
|
8
|
Chang Y, Rui W, Zhang M, Zhou S, Qiu L, Cui P, Hu H, Jiang P, Du X, Ni X, Wang C, Wang J. Facile preparation of copper-gallic acid nanoparticles as a high reproducible and drug loading platform for doxorubicin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chiang PH, Fan CH, Jin Q, Yeh CK. Enhancing Doxorubicin Delivery in Solid Tumor by Superhydrophobic Amorphous Calcium Carbonate-Doxorubicin Silica Nanoparticles with Focused Ultrasound. Mol Pharm 2022; 19:3894-3905. [PMID: 36018041 DOI: 10.1021/acs.molpharmaceut.2c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current approach of delivering chemotherapy via pH-sensitive amorphous calcium carbonate-doxorubicin silica nanoparticles (ADS NPs) faces the challenge of insufficient drug dose due to drug instability within the bloodstream and poor tumor penetration. To overcome these long-standing obstacles, we proposed a superhydrophobic coating on the surface of the ADS NPs that could be easily modified via fluorination (ADSF NPs). The surface of fluorinated ADS NPs was further modified with a phospholipid layer to reduce aggregation and improve biocompatibility (ADSFL NPs). The contact angle and mean size of ADSFL NPs were 30.2 ± 4.4° and 353.1 ± 54.2 nm, respectively. The superhydrophobic layer generated interfacial nanobubbles on the outer shell of the NPs that reduced water-induced leakage of doxorubicin (DOX) sevenfold compared with the uncoated group and induced a cavitation effect upon ultrasound (US) sonication. Moreover, release of DOX from the ADSFL NPs could be triggered by US, and this release was further improved 1.6-fold in acidic aqueous conditions, indicating that the ADSFL NPs retained pH responsiveness. Enhanced sonography contrast and histological examination demonstrated that US could trigger cavitation activities from ADSFL NPs in vivo to induce vessel disruption and enhance the fluorescence intensity of DOX within the tumor region threefold under US imaging guidance compared with the ADSFL NPs-only group.
Collapse
Affiliation(s)
- Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan 430022, Hubei, China
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
11
|
Zhou M, Li B, Li N, Li M, Xing C. Regulation of Ca 2+ for Cancer Cell Apoptosis through Photothermal Conjugated Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2834-2842. [PMID: 35648094 DOI: 10.1021/acsabm.2c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ca2+ overload is caused by the abnormal accumulation of Ca2+, which is a potential therapeutic strategy for inhibiting tumor growth. However, due to the limited intracellular Ca2+ concentration, its anticancer effect is non-significant. Herein, near-infrared (NIR)-responsive nanoparticles NPs-PCa (DPPC-DSPE-PEG2000-NH2@PDPP@CaO2@DOX) were designed and prepared to achieve photothermal trigger of Ca2+ release, thereby increasing intracellular Ca2+ content. Furthermore, the nanoparticles convert light to heat to activate the transient receptor potential cation channel subfamily V member 1 (TRPV1) ion channels, allowing external Ca2+ to flow into the cells, further increasing the Ca2+ concentration. NPs-PCa nanoparticles overcome the limitation of insufficient concentration by increasing Ca2+ in both internal and external approaches. Meanwhile, an imbalance of intracellular Ca2+ induces mitochondrial dysfunction and ultimately results in cancer cell death. This study provides an effective strategy for inhibiting breast cancer tumor growth by regulating Ca2+ concentration.
Collapse
Affiliation(s)
- Mei Zhou
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mengying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
12
|
Koh E, Lee YT. Preparation of Ligand Brush Nanocapsules for Robust Self-Controlled Antimicrobial Activity with Low Cytotoxicity at Target pH and Humidity. Pharmaceutics 2022; 14:280. [PMID: 35214011 PMCID: PMC8877937 DOI: 10.3390/pharmaceutics14020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
This study prepared nanocapsules (NCs) with excellent self-controlled antimicrobial activity at pH 6-7 and humidity 45-100%, conditions in which most bacterial and fungal strains thrive. The nanocapsule substrate (NC@SiO2) was 676 nm in diameter, and the ligand-grafted capsule (NC@SiO2-g-MAA) was 888 nm. The large surface area and outer ligand brush of the NCs induced a rapid, self-controlled antibacterial response in the pH and humidity conditions needed for industrial and medical applications. Ligand-brush NCs containing an anionic antimicrobial drug had a rapid release effect because of the repellent electrostatic force and swelling properties of the ligand brushes. Controlled release of the drug was achieved at pH 6 and humidity of 45% and 100%. As many carboxylic acid groups are deprotonated into carboxylic acids at pH 5, the NC@SiO2-g-MAA had a high negative charge density. Carboxylic acid groups are anionized (-COO-) at pH 6 and above and push each other out of the capsule, expanding the outer shell as in a polymer brush to create the release behavior. The surface potential of the NC intermediate (NC@SiO2-MPS) was -23.45 [mV], and the potential of the capsule surface decreased to -36.4 [mV] when the MAA ligand brushes were grafted onto the surface of the capsule intermediate. In an antimicrobial experiment using Escherichia coli, a clear zone of 13-20 mm formed at pH 6, and the E. coli was eradicated completely at pH 6 and pH 7 when the humidity was 100%.
Collapse
Affiliation(s)
| | - Yong Taek Lee
- Department of Chemical Engineering, Faculty of Chemical Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea;
| |
Collapse
|
13
|
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021; 175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides hold promise to supplement small molecules antibiotics and combat the multidrug resistant microbes. There are however technical hurdles towards the clinical applications, largely due to the inherent limitations of peptides including stability, cytotoxicity and bioavailability. Here we review recent studies concerning the delivery and formulation of antimicrobial peptides, by categorizing the different strategies as driven by physical interactions or chemical conjugation reactions, and carriers ranging from inorganic based ones (including gold, silver and silica based solid nanoparticles) to organic ones (including micelle, liposome and hydrogel) are covered. Besides, targeted delivery of antimicrobial peptides or using antimicrobial peptides as the targeting moiety, and responsive release of the peptides after delivery are also reviewed. Lastly, strategies towards the increase of oral bioavailability, from both physical or chemical methods, are highlighted. Altogether, this article provides a comprehensive review of the recent progress of the delivery and formulation of antimicrobial peptides towards clinical application.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Nahi O, Kulak AN, Kress T, Kim YY, Grendal OG, Duer MJ, Cayre OJ, Meldrum FC. Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chem Sci 2021; 12:9839-9850. [PMID: 34349958 PMCID: PMC8293999 DOI: 10.1039/d1sc02991f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO3). Demonstrating our approach with bovine serum albumin (BSA) nanogels loaded with (bio)active compounds, including doxorubicin (a chemotherapeutic drug) and lysozyme (an antibacterial enzyme), we show that these nanogels can be occluded within calcite host crystals at levels of up to 45 vol%. Encapsulated within the dense mineral, the active compounds are stable against harsh conditions such as high temperature and pH, and controlled release can be triggered by a simple reduction of the pH. Comparisons with analogous systems - amorphous calcium carbonate, mesoporous vaterite (CaCO3) polycrystals, and calcite crystals containing polymer vesicles - demonstrate the superior encapsulation performance of the nanogel/calcite system. This opens the door to encapsulating a broad range of existing nanocarrier systems within single crystal hosts for the efficient storage, transport and controlled release of various active guest species.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Ola G Grendal
- The European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
15
|
Zhao ZQ, Song W, Yan XQ, Tang JH, Hou JC, Wang DD, Yang SJ, Zhang Q, Zhang J. Autophagy Modulation and Synergistic Therapy to Combat Multidrug Resistance Breast Cancer Using Hybrid Cell Membrane Nanoparticles. J Biomed Nanotechnol 2021; 17:1404-1416. [PMID: 34446143 DOI: 10.1166/jbn.2021.3116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of multidrug resistance (MDR) is a commonly observed phenomenon in many cancer types. It contributed significantly to the poor outcome of many currently available chemotherapies. Considering autophagy as one of the most important physiological process in cancer progression, we thereby proposed an anti-autophagy siRNA and doxorubicin (Dox) co-delivery system (MC/D-siR) to combat MDR breast cancer using sequential construction. Our results demonstrated the potential of MC/D-siR to effectively transfect the loaded siRNA to result in significant downregulation of intracellular autophagy level in MCF-7/Adr (Dox resistance MCF-7 cell line) cells, which in turn cut off the ATP supply and to reverse the MDR and potentiated accumulated drug retention in cells. As a result, MC/D-siR showed much elevated anticancer benefits than single loaded platforms (MC/Dox or MC/siRNA), indicating the ability for effective MDR cancer treatment through the combination of autophagy regulation and chemotherapy.
Collapse
Affiliation(s)
- Zhi-Qiang Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, 223002, P. R. China
| | - Wei Song
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Xue-Qin Yan
- Department of General Surgery, Huai'an People's Hospital of Hongze District, Huai'an, 223002, P. R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jun-Chen Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
16
|
Chang N, Zhao Y, Ge N, Qian L. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Deliv 2021; 27:1073-1086. [PMID: 32706272 PMCID: PMC7470062 DOI: 10.1080/10717544.2020.1797238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The efficacy of chemotherapeutic agents for colon cancer treatment is limited by multidrug resistance (MDR) and insufficient intracellular release of the administered nanomedicine. To overcome these limitations, we constructed a pH/ROS cascade-responsive and self-accelerating drug release nanoparticle system (PLP-NPs) for the treatment of multidrug-resistant colon cancer. The PLP-NPs comprised a reactive oxygen species (ROS)-sensitive polymeric paclitaxel (PTX) prodrug (DEX-TK-PTX), a pH-sensitive poly(l-histidine) (PHis), and beta-lapachone (Lapa), a ROS-generating agent. We found that PLP-NPs could accumulate in tumor tissue through enhancement of the permeability and retention (EPR) effect, and were subsequently internalized by cancer cells via the endocytic pathway. Within the acidic endo-lysosomal environment, PHis protonation facilitated the escape of the PLP-NPs from the lysosome and release of Lapa. The released Lapa generated a large amount of ROS, consumed ATP, and downregulated P-glycoprotein (P-gp) production through the activity of NQO1, an enzyme that is specifically overexpressed in tumor cells. In addition, the generated ROS promoted the release of PTX from DEX-TK-PTX to kill cancer cells, while ATP depletion inhibited P-gp-mediated MDR. In vitro and in vivo experiments subsequently confirmed that PLP-NPs induced tumor-specific cytotoxicity and overcame the MDR of colon cancer. Our findings indicate that the use of the PLP-NPs system represents a promising strategy to counter MDR in the treatment of colon cancer.
Collapse
Affiliation(s)
- Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Yufei Zhao
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Ning Ge
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| |
Collapse
|
17
|
Zhu Y, Guo Y, Liu M, Wei L, Wang X. An oroxylin A-loaded aggregation-induced emission active polymeric system greatly increased the antitumor efficacy against squamous cell carcinoma. J Mater Chem B 2021; 8:2040-2047. [PMID: 32100790 DOI: 10.1039/c9tb01818b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Squamous cell carcinoma (SCC) is a usually responds poorly to treatment suffers from poor therapeutic benefits while oroxylin A (OA) is a promising flavonoid with high anticancer efficacy against various cancer types. Here in our study, in order to reveal the potential of OA based drug delivery systems (DDSs) in the treatment of SCC, we firstly revealed that OA had a certain pharmacodynamic effect on skin SCC (A431 cells). Afterwards, OA was loaded into a newly synthesized aggregation-induced emission (AIE)-active polymer to construct OA-loaded PDots for the first time. Our results revealed that OA-loaded PDots showed preferable drug loading and enhanced stability. Moreover, the DDS was also capable of self-illumination in the aggregate state to reveal the uptake profile. Most importantly, the DDS showed much more elevated anticancer benefits than free OA in vitro and advanced tumor targetability in vivo, suggesting that it might be a promising system against SCC.
Collapse
Affiliation(s)
- Yejin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China. and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Yongjian Guo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Mengdi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
18
|
Wang C, Chen S, Yu F, Lv J, Zhao R, Hu F, Yuan H. Dual-Channel Theranostic System for Quantitative Self-Indication and Low-Temperature Synergistic Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007953. [PMID: 33590704 DOI: 10.1002/smll.202007953] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
A conventional theranostic system usually employs a single fluorescence channel to show the pharmacokinetic events, which usually fails to quantitatively reveal the true cumulative drug release and with low accuracy. Herein, indocyanine green (ICG) and chlorins e6 (Ce6) are selected not only as conventional photothermal/photodynamic agents, but also to offer two independent fluorescence channels to cross validate the authenticity of pharmacokinetic events and to quantitatively reveal cumulative drug release in tumor tissues in a "turn on" manner. Employing the Ca2+ of amorphous calcium carbonate as a reversible linker, the photosensitivity and fluorescence of Ce6 are physically quenched by ICG during circulation to reduce the side effect of photodynamic therapy (PDT) while being readily restored in tumor tissue to reveal the quantitative drug release. Most importantly, the combination of photothermal therapy (PTT) and PDT allows low-temperature synergistic therapy of cancer through the controlled expression of heat shock protein in cells and mild hyperthermia enhanced reactive oxygen species diffusion/penetration among cells. This work not only develops a facile approach to fabricate a dual-channel theranostic system to precisely indicate the accumulation and quantitative drug release in tumor tissue, but also presents a unique low-temperature synergistic strategy to destroy tumor in an effective and minimally invasive manner.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fangying Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianghong Lv
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Rui Zhao
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
19
|
Water/pH dual responsive in situ calcium supplement collaborates simvastatin for osteoblast promotion mediated osteoporosis therapy via oral medication. J Control Release 2020; 329:121-135. [PMID: 33279604 DOI: 10.1016/j.jconrel.2020.11.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
Calcium supplement is the most commonly adopted treatment for osteoporosis but usually requires high dose and frequency. The modality of calcium supplement is therefore overlooked by current nanomedicine-based osteoporosis therapies without proper oral formulations. Herein, we proposed a tetracycline (Tc) modified and monostearin (MS) coated amorphous calcium carbonate (ACC) platform (TMA) as oral bone targeted and osteoporosis microenvironment (water/pH) responsive carrier for in situ calcium supplement. Moreover, current osteoporosis therapies also fall short of finding suitable molecular target and effective therapeutic regimen to further increase the therapeutic efficacy over available treatment means. As a result, the simvastatin (Sim) was loaded into TMA to construct drug delivery system (TMA/Sim) capable of synergistically activating the bone morphogenetic proteins (BMPs)-Smad pathway to provide a novel therapeutic regimen for osteoblast promotion mediated osteoporosis therapy. Our results revealed that optimized TMA showed high accessibility and oral availability with targeted drug delivery to bone tissue. Most importantly, benefit from the effective in situ calcium supplement and targeted Sim delivery, this therapeutic regime (TMA/Sim) achieved better synergetic effects than conventional combination strategies with promising osteoporosis reversion performance under low calcium dosage (1/10 of commercial calcium carbonate tablet) and significantly attenuated side effects.
Collapse
|
20
|
Li D, Cui R, Xu S, Liu Y. Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance. Drug Deliv 2020; 27:191-199. [PMID: 31924110 PMCID: PMC7006694 DOI: 10.1080/10717544.2019.1710622] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Combined administration of different drugs is a widely acknowledged approach for effective cancer therapy. However, the limited targeting, as well as inferior drug loading capacities of current drug delivery systems (DDS), are still the bottleneck for better performance in cancer treatment. Herein, we successfully developed a cancer cell membrane (CM) decorated calcium carbonate (CC) hybrid nanoparticles (HN) for the co-delivery of cisplatin (CDDP) and oleanolic acid (OA). The physicochemical property of HN/CDDP/OA was evaluated, which revealed that the as-prepared DDS was core-shell structured and well-dispersed nanoparticles with size around 100 nm. The HN/CDDP/OA showed high stability and biocompatibility with pH-responsive drug release. Moreover, the CM modification in HN also demonstrated highly elevated tumor-homing nature than bare CC. Finally, the feasibility of HN/CDDP/OA in the treatment of gastric cancer (MGC-803 cell line) was assessed. HN/CDDP/OA showed better performance than mono systems with enhanced apoptosis and capable of reversing multidrug resistance (MDR) of cancer cells.
Collapse
Affiliation(s)
- Danyang Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixue Cui
- Department of Medical Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Shuning Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Wang JY, Song YQ, Peng J, Luo HL. Nanostructured Lipid Carriers Delivering Sorafenib to Enhance Immunotherapy Induced by Doxorubicin for Effective Esophagus Cancer Therapy. ACS OMEGA 2020; 5:22840-22846. [PMID: 32954132 PMCID: PMC7495447 DOI: 10.1021/acsomega.0c02072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The tumor microenvironment (TME) plays a significant role in weakening the effect of cancer immunotherapy, which calls for the remodeling of TME. Herein, we fabricated a nanostructured lipid carrier (NLC) to codeliver doxorubicin (Dox) and sorafenib (Sfn) as a drug delivery system (NLC/D-S). The Sfn was expected to regulate the TME of esophagus cancer. As a result, the immune response induced by Dox-related immunogenicity cell death could be fully realized. Our results demonstrated that Sfn was able to remodel the TME through downregulation of regulatory T cells (Treg), activation of effector T cells, and relieving of PD-1 expression, which achieved synergistic effect on the inhibition of primary tumor but also subsequent strong immune response on the regeneration of distant tumor.
Collapse
|
22
|
Yang B, Hao A, Chen L. Mirror siRNAs loading for dual delivery of doxorubicin and autophagy regulation siRNA for multidrug reversing chemotherapy. Biomed Pharmacother 2020; 130:110490. [PMID: 32712530 DOI: 10.1016/j.biopha.2020.110490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
The multidrug resistance (MDR) which widely observed in multiple cancer types is responsible for the poor chemotherapy benefits of doxorubicin (Dox). Here in our study, Dox was firstly loaded into a scramble siRNA and then condensed by polyethyleneimine (PEI) 25k together with anti-autophagy siRNA, the obtained PEI/Si-D containing mirror RNAs was further coated with hyaluronic acid (HA) to shield the surface charge of PEI and offer tumor-homing property that finally developed a platform for effective cancer chemotherapy (HP/Si-D). Our results revealed that the obtained HP/Si-D was showed high stability and biocompatibility with promising transfection profile. As a result, the anti-autophagy siRNA downregulated autophagy level of target cells, which further decreased ATP supply to enhance drug retention and cell cycle arrest. These results contributed significantly to reverse the MDR of A549/Dox (Dox resistance A549 cell line) cells with promising in vitro and in vivo results, which suggested the potential of effective MDR cancer therapy using synergistic anti-autophagy and chemotherapy.
Collapse
Affiliation(s)
- Bo Yang
- Department of Thoracic Surgery, Anyang Tumour Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan 455000, China
| | - Anlin Hao
- Department of Thoracic Surgery, Anyang Tumour Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan 455000, China
| | - Lin Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
23
|
Wang J, Tao S, Jin X, Song Y, Zhou W, Lou H, Zhao R, Wang C, Hu F, Yuan H. Calcium Supplement by Tetracycline guided amorphous Calcium Carbonate potentiates Osteoblast promotion for Synergetic Osteoporosis Therapy. Am J Cancer Res 2020; 10:8591-8605. [PMID: 32754265 PMCID: PMC7392017 DOI: 10.7150/thno.45142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The calcium supplement is a clinically approved approach for osteoporosis therapy but usually requires a large dosage without targetability and with poor outcome. This modality is not fully explored in current osteoporosis therapy due to the lack of proper calcium supplement carrier. Methods: In this study, we constructed a tetracycline (Tc) modified and simvastatin (Sim) loaded phospholipid-amorphous calcium carbonate (ACC) hybrid nanoparticle (Tc/ACC/Sim). Results: The resulted Tc/ACC/Sim was able to enhance its accumulation at the osteoporosis site. Most importantly, the combination of calcium supplement and Sim offered synergetic osteoblast promotion therapy of osteoporosis with advanced performance than non-targeted system or mono therapy. Conclusion: This platform provides an alternative approach to stimulate bone formation by synergetic promotion of osteoblast differentiation using calcium supplement and Sim.
Collapse
|
24
|
Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020; 15:4049-4062. [PMID: 32606663 PMCID: PMC7293410 DOI: 10.2147/ijn.s237156] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Calcium carbonate (CC) nanoparticles have broad biomedical utilizations, owing to their multiple intrinsic merits. However, bare CC nanoparticles do not allow for the development of multifunctional devices suitable for advanced drug delivery in cancer therapy. Methods Phospholipid-modified phospholipid–CC hybrid nanoparticles were prepared in our study using a combination of vapor-diffusion and solvent-diffusion methods to offer optimized pharmaceutical capabilities. Results Considering that particle size is a critical parameter that plays an important role in both in vitro and in vivo behaviors of nanoparticles, we here for the first time a present detailed protocol for the size-controlled preparation of hybrid nanoparticles, as well as analysis of the in vitro/in vivo behaviors of differently sized hybrid nanoparticles. Conclusion Our results might significantly advance the application of this promising material in more varied fields.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xuerong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
25
|
Zhao X, Shen R, Bao L, Wang C, Yuan H. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohydr Polym 2020; 245:116509. [PMID: 32718620 DOI: 10.1016/j.carbpol.2020.116509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
Currently, the development of polysaccharide, especially chitosan (CS), based drug delivery system to afford magnetic resonance imaging (MRI) guided theranostic cancer therapy remains largely unexplored. Herein, we successfully developed a CS derived polymer (Gd-CS-OA) through chemical conjugation of CS, octadecanoic acid (OA) and gadopentetic acid (GA). After self-assemble into glycolipid nanoparticles to loaded chlorin e6 (Ce6), the resulted Gd-CS-OA/Ce6 was able to realize MRI guided photodynamic therapy (PDT) of cancer. Our results revealed that Gd-CS-OA was able to increase the MRI sensitivity as compared to Gd-DTPA with decent residence time and preferable excretion behavior in vivo. Moreover, the Gd-CS-OA/Ce6 showed negligible hemolysis, satisfactory ROS generation and stability in physiological environments with preferable cellular uptake and enhanced in vitro cytotoxicity (through elevated ROS generation) on 4T1 cells. Most importantly, Gd-CS-OA/Ce6 demonstrated promising in vivo tumor targetability (enhanced penetration and retention effect) and powerful MRI guided tumor ablation through PDT on in situ 4T1 tumor model.
Collapse
Affiliation(s)
- Xin Zhao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Ruoyu Shen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lu Bao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Cheng Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; School of Pharmaceutical Engineering & Life Science, Changzhou University, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
26
|
Xu W, Lou Y, Chen W, Kang Y. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. ACTA ACUST UNITED AC 2020; 65:229-236. [PMID: 31605575 DOI: 10.1515/bmt-2019-0056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023]
Abstract
Effective cancer therapy usually requires the assistance of well-designed drug carriers. In order to increase the drug accumulation to tumor tissue as well as to reduce the side effects of drug carriers, the hybrid drug delivery system (DDS) was developed by integrating folic acid (FA) and a metal-organic framework (MOF). The anticancer drug doxorubicin (DOX) was preloaded into the MOF nanoparticles during the synthesis process of the MOF nanoparticles. After surface modification with FA, the resulting FA/MOF/DOX nanoparticles were capable of serving as a biocompatible osteosarcoma targeting a DDS to enhance the chemotherapy of osteosarcoma. The dynamic light scattering method revealed that the obtained FA/MOF/DOX nanoparticles were particles with a size around 100 nm. Moreover, FA/MOF/DOX nanoparticles could enhance the delivery efficacy of DOX into MG63 (human osteosarcoma) cells as compared to FA free nanoparticles (MOF/DOX), in which a folate receptor (FR) might be involved. It was worth mentioning that in vitro [methylthio tetrazole (MTT) study in the MG63 cells] and in vivo (anticancer study in the MG63 xenograft model) assays both revealed that FA/MOF/DOX nanoparticles possessed stronger anticancer capability than free DOX or MOF/DOX nanoparticles.
Collapse
Affiliation(s)
- Weifan Xu
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yi Lou
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - WangShenjie Chen
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yifan Kang
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| |
Collapse
|
27
|
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020; 15:2439-2483. [PMID: 32346289 PMCID: PMC7169473 DOI: 10.2147/ijn.s227805] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nahidah Ibrahim Hammadi
- Department of Histology, College of Veterinary Medicine, University of Al-Anbar, Ramadi, Republic of Iraq
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kawa Mohammad Amin
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Kepala Batas13200, Pulau Pinang, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
28
|
Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, Xiong S, Zhao Y. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020; 126:110046. [PMID: 32145586 DOI: 10.1016/j.biopha.2020.110046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer vaccine is widely considered as a powerful tool in immunotherapy. In particular, the effective antigen processing and presentation natures of dendritic cell (DC) have made it a promising target for the development of therapeutic vaccine for cancer treatment. Here in our study, a versatile cancer cell membrane (CCM) coated calcium carbonate (CC) nanoparticles (MC) that capable of generating in situ tumor-associated antigens (TAAs) for DC vaccination is developed. Low-dose doxorubicin hydrochloride (Dox) could be encapsulated in the CC core of MC to trigger immunogenic cell death (ICD) while chlorins e6 (Ce6), a commonly adopted photosensitizer, was loaded in the CCM of MC for effective photodynamic therapy (PDT) through the generation of reactive oxygen species (ROS) to finally construct the vaccine (MC/Dox/Ce6). Most importantly, our in-depth study revealed the treatment of MC/Dox/Ce6 was able to elicit TAAs population and DC recruitment, triggering the following immune response cascade. In particular, the recruited DC cells could be stimulated in situ for effective vaccinations. Both in vitro and in vivo experiments suggested the capability of this all-in-one DDS to enhance DCs maturation to finally result in effective inhibition of both primary and distant growth of breast cancer upon single administration of low dose Dox and Ce6.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Jinfang Song
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Bei Wang
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Haiying Hua
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Huanhuan Zhu
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Xiaoqiang Guo
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Shuming Xiong
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Yiqing Zhao
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China.
| |
Collapse
|
29
|
Zhao Z, Ji M, Wang Q, He N, Li Y. Ca 2+ signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer. Carbohydr Polym 2020; 238:116073. [PMID: 32299562 DOI: 10.1016/j.carbpol.2020.116073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Off-target drug delivery, together with multidrug resistance (MDR), are two keys obstacles that account for the disappointing outcome in clinical chemotherapy of cancer. To solve these dilemmas, Herein, we constructed cancer cell membrane (CCM) modified silica (CS) nanoparticles (CCM/CS) to co-deliver Ca2+ channel siRNA with doxorubicin (DOX) to construct a platform (CCM/CS/R-D) for the efficient therapy of cervical cancer. It was demonstrated that the optimal CCM/CS/R-D was spherical nanoparticles with size at 122.39 ± 4.69 nm and the surface charge of -27.76 ± 3.12 mV. In addition, the CCM/CS/R-D showed acid responsive drug release while high stability under physiological conditions with negligible hemolysis. The CCM/CS/R-D showed CCM mediated cellular uptake and efficient endosomal escape as well as siRNA transfection potential (comparable to that of PEI 25 K) on MDR cervical cancer cells (HeLa/DOX). Most importantly, the MDR of cancer cells was conquered through modulation of T-type Ca2+ (Cav) channels. It was observed that the Cav channel siRNA could negatively regulate the level of cytosolic Ca2+ concentration which triggered G0/G1 phase cell cycle arrest and elevated intracellular drug retention in HeLa/DOX cells without significantly affect the expression of P-glycolprotein (P-gp). The in vitro and in vivo experiments revealed that CCM/CS/R-D exerted greatly enhanced tumor targetability and therapeutic effect on HeLa/DOX, which was superior than CS/R-D or mono delivery system (CCM/CS/R or CCM/CS/D).
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Qianqing Wang
- Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
30
|
Sun X, Li Y, Xu L, Shi X, Xu M, Tao X, Yang G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J Int Med Res 2020; 48:300060519897185. [PMID: 32054349 PMCID: PMC7111025 DOI: 10.1177/0300060519897185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022] Open
Abstract
Objective To develop and evaluate a drug delivery system (DDS) capable of targeting cancer cells while at the same time delivering two chemotherapeutic agents to overcome multidrug resistance (MDR). Methods This study developed a DDS composed of heparin (HA)-coated meta-organic framework (MOF) nanoparticles (HM) designed to deliver doxorubicin (Dox) and quercetin (Que). A range of in vitro and in vivo studies were conducted to determine the characteristics of the HM/Dox/Que nanoparticles, their ability to produce cytotoxic effects in Dox-resistant A549/Dox cells and target and treat solid tumours in a mouse xenograft model of human lung carcinoma. Results This study demonstrated that the HM/Dox/Que nanoparticles reduced cell viability, increased apoptosis, arrested cells in the G0/G1 phase of the cell cycle and reversed MDR in A549/Dox cells in vitro when compared with mono-drug delivery. In a mouse xenograft model of human lung carcinoma, the HM/Dox/Que nanoparticles targeted the tumours and reduced tumour growth as determined by tumour volume. Conclusion The use of HM/Dox/Que nanoparticles might be a viable alternative to traditional chemotherapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaojun Sun
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Yongxing Li
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Liang Xu
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Xinyu Shi
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Mengmin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Xuefang Tao
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Guobiao Yang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| |
Collapse
|
31
|
Chen D, Cai L, Guo Y, Chen J, Gao Q, Yang J, Li Y. Cancer Cell Membrane-Decorated Zeolitic-Imidazolate Frameworks Codelivering Cisplatin and Oleanolic Acid Induce Apoptosis and Reversed Multidrug Resistance on Bladder Carcinoma Cells. ACS OMEGA 2020; 5:995-1002. [PMID: 31984255 PMCID: PMC6977025 DOI: 10.1021/acsomega.9b02261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 05/10/2023]
Abstract
Combination therapy is emerging as a preferable approach in cancer therapy with minimized side effects and elevated performance. Nevertheless, the poor targeting and drug loading of currently available drug delivery systems (DDSs) are the main difficulties to realize preferable combination therapy of cancer. As a result, a cancer cell membrane-decorated zeolitic-imidazolate framework hybrid nanoparticle (HP) was successfully constructed in our study to codeliver cisplatin (DDP) and oleanolic acid (OLA). Our results showed positive results of the platform (HP/DDP/OLA) for the treatment of bladder cancer (SW780). In detail, HP/DDP/OLA could enhance apoptosis while reverse multidrug resistance in SW780 cells than free drugs alone or monodelivery systems, which might be a suitable DDS for codelivery of different drugs with great promise.
Collapse
Affiliation(s)
- Dong Chen
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Longbo Cai
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Yihong Guo
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Junyi Chen
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Qiangli Gao
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| | - Junxian Yang
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| | - Yongfa Li
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| |
Collapse
|
32
|
Zhou H, Ge J, Miao Q, Zhu R, Wen L, Zeng J, Gao M. Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjug Chem 2019; 31:315-331. [PMID: 31765561 DOI: 10.1021/acs.bioconjchem.9b00699] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inorganic nanoparticles as a versatile nanoplatform have been broadly applied in the diagnosis and treatment of cancers due to their inherent superior physicochemical properties (including magnetic, thermal, optical, and catalytic performance) and excellent functions (e.g., imaging, targeted delivery, and controlled release of drugs) through surface functional modification or ingredient dopant. However, in practical biological applications, inorganic nanomaterials are relatively difficult to degrade and excrete, which induces a long residence time in living organisms and thus may cause adverse effects, such as inflammation and tissue cysts. Therefore, the development of biodegradable inorganic nanomaterials is of great significance for their biomedical application. This Review will focus on the recent advances of degradable inorganic nanoparticles for cancer theranostics with highlight on the degradation mechanism, aiming to offer an in-depth understanding of degradation behavior and related biomedical applications. Finally, key challenges and guidelines will be discussed to explore biodegradable inorganic nanomaterials with minimized toxicity issues, facilitating their potential clinical translation in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ran Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ling Wen
- Department of Radiology , The First Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China.,Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
33
|
Pan H, Sun Y, Cao D, Wang L. Low-density lipoprotein decorated and indocyanine green loaded silica nanoparticles for tumor-targeted photothermal therapy of breast cancer. Pharm Dev Technol 2019; 25:308-315. [PMID: 31820663 DOI: 10.1080/10837450.2019.1684944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongying Pan
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Yi Sun
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Danxia Cao
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Lihui Wang
- Central Laboratory, Danyang People’s Hospital, Danyang, Jiangsu, China
| |
Collapse
|
34
|
Zhang X, Li Y, Wei M, Liu C, Yang J. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv 2019; 26:129-136. [PMID: 30798640 PMCID: PMC6394284 DOI: 10.1080/10717544.2018.1564403] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
Combinational therapy is usually considered as a preferable approach for effective cancer therapy. Especially, combinational chemo and photothermal therapy is of particular interest due to its high flexibility as well as efficiency. In this article, we the silica nanoparticles (SLN) were surface conjugated with Cetuximab (Cet-SLN) to target epidermal growth factor receptor (EGFR), a common receptor that usually observed to overexpress in multiple breast cancers. Moreover, the high drug loading capacity of Cet-SLN was employed to encapsulate photothermal agent indocyanine green (ICG) to finally fabricate a versatile drug delivery system (DDS) able to co-deliver Cet and ICG (Cet-SLN/ICG) for combinational chemo-photothermal therapy of breast cancer. The obtained results clearly demonstrated that Cet-SLN/ICG was well-dispersed nanoparticles with preferable stability under physiological condition. Furthermore, due to the conjugation of Cet, Cet-SLN/ICG could target EGFR which overexpress in MCF-7 cells. Most importantly, both in vitro and in vivo results suggested that compared with Cet or ICG alone, the Cet-SLN/ICG showed superior anticancer efficacy. In conclusion, Cet-SLN/ICG could be a potential platform for effective combinational chemo-photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Cardiovascular Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Chang Liu
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
He J, Gong C, Qin J, Li M, Huang S. Cancer Cell Membrane Decorated Silica Nanoparticle Loaded with miR495 and Doxorubicin to Overcome Drug Resistance for Effective Lung Cancer Therapy. NANOSCALE RESEARCH LETTERS 2019; 14:339. [PMID: 31705398 PMCID: PMC6841775 DOI: 10.1186/s11671-019-3143-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.
Collapse
Affiliation(s)
- Jinyuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Jie Qin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Mingan Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Shaohong Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| |
Collapse
|
36
|
Wang C, Yu F, Liu X, Chen S, Wu R, Zhao R, Hu F, Yuan H. Cancer-Specific Therapy by Artificial Modulation of Intracellular Calcium Concentration. Adv Healthc Mater 2019; 8:e1900501. [PMID: 31368208 DOI: 10.1002/adhm.201900501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Indexed: 01/16/2023]
Abstract
Calcium (Ca2+ ) hemeostasis is crucial for the normal function of cellular biochemistry. The abnormal frequency of Ca2+ signaling in cancer cells makes them more vulnerable to Ca2+ modulation than normal cells. Here in this study, a novel cancer-specific therapy by artificially triggering Ca2+ overload in cancer cells is proposed. The feasibility of this therapy is illustrated by successful coupling of selective extrusion (Ca2+ ) inhibition effect of Curcumin (Cur) and the effective Ca2+ generating capability of amorphous calcium carbonate (ACC) into a facilely prepared water responsive phospholipid (PL)-ACC hybrid platform (PL/ACC-Cur). The obtained results demonstrate that PL/ACC-Cur can specifically boost the intracellular Ca2+ concentration to cause Ca2+ overload and to trigger mitochondria-related apoptosis in MCF-7 cells while sparing normal hepatocyte (L02), which might be a promising approach for effective cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Fangying Yu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Xuerong Liu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Shaoqing Chen
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Wu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Zhao
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang University No. 3 Qingchun East Road Hangzhou 310016 China
| | - Fuqiang Hu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hong Yuan
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
37
|
Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability. J Control Release 2019; 309:145-157. [DOI: 10.1016/j.jconrel.2019.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
|
38
|
Wei K, Zhang J, Li X, Shi P, Fu P. High density lipoprotein coated calcium carbonate nanoparticle for chemotherapy of breast cancer. J Biomater Appl 2019; 34:178-187. [PMID: 31109259 DOI: 10.1177/0885328219850759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai Wei
- 1 Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Li
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Shi
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Ni J, Sun Y, Song J, Zhao Y, Gao Q, Li X. Artificial Cell-Mediated Photodynamic Therapy Enhanced Anticancer Efficacy through Combination of Tumor Disruption and Immune Response Stimulation. ACS OMEGA 2019; 4:12727-12735. [PMID: 31460395 PMCID: PMC6682153 DOI: 10.1021/acsomega.9b01881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Recent studies have identified photodynamic therapy (PDT) as a promising approach for cancer treatment. Here, in this study, we have constructed cancer cell membrane (CCM)-coated silica nanoparticles (SIL) as an artificial cell carrier (CCM/SIL) to effectively deliver chlorin e6 (Ce6), a commonly adopted photodynamic reagent (CCM/SIL/Ce6), to achieve enhanced PDT of cancer. In addition, apart from the generally recognized cytotoxicity induced by reactive oxygen species (ROS), our study also revealed that ROS could further potentiate the loss of intercellular junctions and integrity disruption as a result of down-regulation of VE-cadherin and CD31. Consequently, dendritic cells (DCs) were more readily accumulated to the tumor tissue and became maturated, which secreted tumor necrosis factor-α and interleukin-12 (IL-12) to trigger the following immune responses. Our work not only explored the anticancer feasibility of a new system but also demonstrated the underlining mechanisms responsible for PDT-induced anticancer effects, which offers a new perspective to employ and improve the efficacy of PDT and related systems.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Ying Sun
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Jinfang Song
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Yiqing Zhao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Qiufang Gao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Xia Li
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| |
Collapse
|
40
|
Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2298-2305. [PMID: 31174440 DOI: 10.1080/21691401.2019.1622554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Yu Miao
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Weifeng Ni
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
41
|
Zhang H, Yu N, Chen Y, Yan K, Wang X. Cationic liposome codelivering PI3K pathway regulator improves the response of BRCA1-deficient breast cancer cells to PARP1 inhibition. J Cell Biochem 2019; 120:13037-13045. [PMID: 30873673 DOI: 10.1002/jcb.28574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Although some progresses have been made in breast cancer therapy, effective treatment for BRCA1-deficient breast cancer remains to be a great challenge. It has been demonstrated that the PI3K pathway is inappropriately activated in BRCA1-deficient breast cancers which can be downregulated by microRNA 451 (miR-451). In addition, although PARP1 inhibitors showed relatively positive results in both preclinical and clinical studies, additional efforts to decrease drug resistance as well as reduce systematic toxicity need to be addressed. To this end, by encapsulating the miR-451 mimic and PARP1 inhibitor in the same cationic liposome, we examined the potential of enhancing the response of PARP1 inhibition on BRCA1-deficient breast cancer by regulating the PI3K pathway. Our results revealed that in BRCA1-deficient human breast cancer cell line, PARP1 inhibition resulted in DNA damage with viability decrease, G2/M arrest as well as apoptosis. In contrast, single PI3K inhibition induced G1 arrest along with retarded cell proliferation. However, it was noted that combination of PARP inhibitor and PI3K regulator could exert synergetic function to evidently decrease cell proliferation compared with PARP inhibition alone, which was also confirmed by in vivo antitumor assay using xenograft tumor models. Collectively, our results offer an alternative but superior strategy for the therapy of BRCA1-deficient human breast cancers which may benefit the clinical applications.
Collapse
Affiliation(s)
- Haipeng Zhang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Na Yu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Kaowen Yan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaozhen Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 2019; 16:331-345. [DOI: 10.1080/17425247.2019.1587408] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Pharmacology and Toxicology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khosro Adibkia
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Wang C, Wang Z, Zhao X, Yu F, Quan Y, Cheng Y, Yuan H. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomater 2019; 85:218-228. [PMID: 30557697 DOI: 10.1016/j.actbio.2018.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
In this study, an AIE-active polymer (FTP) was successfully prepared and employed to load anti-cancer drug doxorubicin (DOX) for self-indicating cancer therapy via dual FRET process. Our results demonstrated that the FTP polymer could self-assemble into nanoparticles (NPs) in aqueous solutions to give strong fluorescence emission via intramolecular FRET process. The DOX loaded FTP NPs (drug loading content: 21.77%) were homogeneous particles with size around 50 nm and neutral surface charge, which showed preferable colloidal stability, hemolysis and selective drug release with comparable in vivo antitumor effects to DOX·HCl. In particular, the FRET process between FTP (donor) and DOX (acceptor) could serve as indicator for monitoring the in vitro and in vivo drug release profile, which might be a promising platform to realize real-time monitoring of drug localization and release during the delivery process. STATEMENT OF SIGNIFICANCE: 1. An amphiphilic polymer containing aggregation-induced emission segments and polyethylene glycol (PEG) chains (FTP) was firstly synthesized, which is capable of exerting strong fluorescence via intramolecular Förster resonance energy transfer (FRET) in the aggregate state. 2. The FTP polymer could self-assembled into homogeneous nanoparticles in aqueous environment with decent DOX loading capacity. 3. The DOX loaded FTP nanoparticles can afford FRET-traceable monitoring of the drug release both in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Ziyu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xin Zhao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yiwu Quan
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yixiang Cheng
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|