1
|
Liu Y, Wang M, Hui Y, Sun L, Hao Y, Ren H, Guo H, Yang W. Polyarylether-based COFs coordinated by Tb 3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid. J Mater Chem B 2024; 12:466-474. [PMID: 38086684 DOI: 10.1039/d3tb02070c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, a rare-earth hybrid luminescent material (lanthanide@COF) was constructed for the detection of a biomarker for anthrax (dipicolinic acid, DPA). JCU-505-COOH was prepared by the hydrolysis of the cyano group in JCU-505 via a post-synthetic modification strategy, then the carboxyl groups in JCU-505-COOH coordinated with Tb3+ ions, similar to pincer vising nut. The prepared Tb3+@JCU-505-COOH exhibited a turn-on response toward DPA, which allowed the lanthanide@COF to serve as a fluorescence sensor with excellent selectivity and high sensitivity (binding constant Ka = 3.66 × 103). The fluorescent probe showed satisfactory performance for the determination of DPA in saliva and urine with a detection limit of 0.6 μM. Moreover, we established a facile point-of-care testing (POCT) using the Tb3+@JCU-505-COOH-based fluorescent test paper together with a smartphone for the initial diagnosis of anthrax. As expected, Tb3+@JCU-505-COOH showed great potential for the rapid screening of anthrax due to low cost, simple operation, and wide applicability.
Collapse
Affiliation(s)
- Yinsheng Liu
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Yinfei Hui
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Yanrui Hao
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Henlong Ren
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection of Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
3
|
Lim JYC, Goh L, Otake KI, Goh SS, Loh XJ, Kitagawa S. Biomedically-relevant metal organic framework-hydrogel composites. Biomater Sci 2023; 11:2661-2677. [PMID: 36810436 DOI: 10.1039/d2bm01906j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) are incredibly versatile three-dimensional porous materials with a wide range of applications that arise from their well-defined coordination structures, high surface areas and porosities, as well as ease of structural tunability due to diverse compositions achievable. In recent years, following advances in synthetic strategies, development of water-stable MOFs and surface functionalisation techniques, these porous materials have found increasing biomedical applications. In particular, the combination of MOFs with polymeric hydrogels creates a class of new composite materials that marries the high water content, tissue mimicry and biocompatibility of hydrogels with the inherent structural tunability of MOFs in various biomedical contexts. Additionally, the MOF-hydrogel composites can transcend each individual component such as by providing added stimuli-responsiveness, enhancing mechanical properties and improving the release profile of loaded drugs. In this review, we discuss the recent key advances in the design and applications of MOF-hydrogel composite materials. Following a summary of their synthetic methodologies and characterisation, we discuss the state-of-the-art in MOF-hydrogels for biomedical use - cases including drug delivery, sensing, wound treatment and biocatalysis. Through these examples, we aim to demonstrate the immense potential of MOF-hydrogel composites for biomedical applications, whilst inspiring further innovations in this exciting field.
Collapse
Affiliation(s)
- Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Leonard Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shermin S Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
La Manna S, Florio D, Di Natale C, Marasco D. Modulation of hydrogel networks by metal ions. J Pept Sci 2022:e3474. [PMID: 36579727 DOI: 10.1002/psc.3474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
5
|
Wang J, Zhao L, Yan B. Functionalized luminescent covalent organic frameworks hybrid material as smart nose for the diagnosis of Huanglongbing. J Mater Chem B 2022; 10:5835-5841. [PMID: 35876301 DOI: 10.1039/d2tb01185a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative identification of several volatile organic compounds (VOCs) associated with the same disease provides a strong guarantee of the accurate analysis of the disease. Designing a single luminescent material to interact differently with multiple analytes can generate response patterns with remarkable diversity. Here, a highly green luminescent imine-based 2D COF (TtDFP) is designed and synthesized. TtDFP has ultrasensitive detection performance for trace water in organic solvent. Constructing a ratiometric fluorescence sensor can improve sensitivity for detecting analytes. To contrast the fluorescence signals of Eu3+ and COFs in sensing assays, a simple postsynthetic modification (PSM) method is used to introduce Eu3+ into TtDFP. The obtained red luminescent hybrid material Eu3+@TtDFP EVA film can be a fluorescent nose capable of "sniffing out" and quantifying VOCs (GA and PhA) associated with Huanglongbing (HLB, a devastating disease of citrus) at ppb levels. This work provides a technique of developing functionalized COF hybrid material to facilitate the distinction of various VOCs, which can also be extended to monitor the levels of other VOCs relevant to human health.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Quan X, Xu X, Yan B. Facile fabrication of Tb 3+-functionalized COF mixed-matrix membrane as a highly sensitive platform for the sequential detection of oxolinic acid and nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127869. [PMID: 34844797 DOI: 10.1016/j.jhazmat.2021.127869] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A novel Tb3+-functionalized covalent organic framework-based polymer mixed-matrix membrane (Tb3+@COF MMM) has been successfully fabricated by incorporating the highly stable Tb3+@PI-COF as filler into polyvinylidene fluoride (PVDF) solution. Compared with pure COF membrane, MMM exhibits its good flexibility, processability and high detection sensitivity. The obtained Tb3+@COF-MMM (M) can be employed as a highly sensitive sensing platform for the sequential detection of oxolinic acid (OA) and nitrobenzene (NB) based on a "off-on-off" process. M has performed its great selectivity, high sensitivity, and low detection limit for detecting OA with "turn-on" mechanism. Moreover, owing to the good chemical stability and anti-interference of M sensor, it is prospective to efficiently detect residues of OA in serum or river water. After the detection of M-15 toward OA, the obtained fluorescent M-15/OA exhibits the rapid quenching, facile manipulation, cycling utility and low detection limits for sensing NB solution and vapor. This work has proposed a typical case of developing flexible Ln3+-functionalized COF-based polymer mixed-matrix membrane as a highly sensitive sensing platform for detecting OA and NB, simultaneously revealed the applied potentiality of M for monitoring animal health and environmental pollution.
Collapse
Affiliation(s)
- Xueping Quan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xin Xu
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
7
|
Zhang J, He X, Kong YR, Luo HB, Liu M, Liu Y, Ren XM. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37231-37238. [PMID: 34324287 DOI: 10.1021/acsami.1c11054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) provided a versatile platform for the development of new solid protonic electrolytes but faced great challenges regarding their low chemical stability and poor moisture retention capacity. Herein, we presented the proton-conducting study for zirconium-based MOF-802, revealing that MOF-802 possessed excellent features of extra aqueous and acidic stabilities and room-temperature superprotonic conduction with a proton conductivity of 1.05 × 10-2 S cm-1 at 288 K under 98% relative humidity (RH). Unfortunately, due to the liberation of water molecules from pores/channels, the proton conductivity of MOF-802 dropped significantly at the temperature above 318 K. To solve this issue, for the first time, MOF-802 was hybridized with poly(vinyl alcohol) (PVA) to form MOF-802@PVA hydrogel composites, where the moisture retention capacity of MOF-802 was greatly improved, giving the high room-temperature proton conductivity over 10-3 S cm-1 under ambient humidity. This work paves a new way to improve the moisture retention capacity and proton-conducting performances of porous proton conductors.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin He
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Meng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01153c] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This comprehensive review systematically summarizes the luminescence response mode and chemical sensing mechanism for lanthanide-functionalized MOF hybrids (abbreviated as LnFMOFH).
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- School of Materials Science and Engineering
| |
Collapse
|
9
|
Sun T, Hao S, Fan R, Qin M, Chen W, Wang P, Yang Y. Hydrophobicity-Adjustable MOF Constructs Superhydrophobic MOF-rGO Aerogel for Efficient Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56435-56444. [PMID: 33270430 DOI: 10.1021/acsami.0c16294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate hydrophobicity adjustment of single-phase material is quite challenging and meaningful for water treatment. Here, a strategy combining crystal morphology regulation and post-synthetic modification is reported based on a novel metal-organic framework (MOF, Eu-bdo-COOH, H4bdo = 2,5-bis(3,5-dicarboxylphenyl)-1,3,4-oxadiazole). The hydrophobicity is regulated by crystal size and morphology regulation, and a rough microspherical MOF is successfully synthesized. Meanwhile, the obtained MOF microspheres exhibit high water, chemical, and thermal stability. The post-synthetic modification of alkyl chains achieves fine-tuning of hydrophobicity of MOF microspheres. The static water contact angles can controllably range from 43 to 142°, and the amylamine-modified MOF (AM) obtains the strongest hydrophobicity. In addition, a superhydrophobic aerogel is constructed with AM microspheres and reduced graphene oxide (rGO) for efficient oil-water separation. The AM-rGO aerogel (AM-rGA) exhibits fast and efficient absorption of various oily substances from water, and the adsorption capacity of dibromoethane reaches up to 14,728 wt %. This outstanding oil adsorption capacity can maintain even beyond 50 cycles by the support of the stable aerogel. The strategy of morphology regulation and post-synthetic modification provides a broad approach for the hydrophobic adjustment of numerous MOF materials.
Collapse
Affiliation(s)
- Tiancheng Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Sue Hao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mingyue Qin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wei Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
10
|
Liang X, Liu H, Du Y, Li W, Wang M, Ge B, Zhao L. Terbium functionalized covalent organic framework for selective and sensitive detection of LVX based on fluorescence enhancement. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
12
|
Lian X, Zhang Y, Wang J, Yan B. Antineoplastic Mitoxantrone Monitor: A Sandwiched Mixed Matrix Membrane (MMM) Based on a Luminescent MOF–Hydrogel Hybrid. Inorg Chem 2020; 59:10304-10310. [DOI: 10.1021/acs.inorgchem.0c01451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Lian
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China
| | - Yu Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
13
|
Yang Y, Ren G, Li W, Gu D, Liang Z, Liu Y, Pan Q. Three coordination complexes based on mixed ligand strategy: Coordination diversities and nitrobenzene detections. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Ren M, Wang H, Liu Y, Ma Q, Jia W, Liu M, Wang H, Lu Y. Fluorescent Determination of Mercury (II) and Glutathione Using Amino-MIL-53(Al) Nanosheets. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1755680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Meijuan Ren
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Yuanyuan Liu
- Yinchuan City Center for Disease Control and Prevention, Ningxia, China
| | - Qin Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Wenjing Jia
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Mingzhu Liu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Huiju Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| | - Yongchang Lu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China
- College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai, China
| |
Collapse
|
15
|
Zhang K, Chen TT, Feng CC, Shen YJ, Yang ZR, Zhu C. Luminescent Sm(III) complex bearing dynamic imine bonds as a multi-responsive fluorescent sensor for F - and PO 43- anions together with Zn 2+ cation in water samples. Anal Chim Acta 2020; 1118:52-62. [PMID: 32418604 DOI: 10.1016/j.aca.2020.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
We have designed and synthesized a new luminescent mononuclear samarium (III) complex Sm-2h based on the [1 + 1] Schiff-base macrocycle H2L2h, derived from the cyclocondensation reaction between dialdehyde and diamine precursors, and its exact architecture is determined to be [Sm(HL2h) (NO3)2]. The sensing ability of complex Sm-2h is carefully evaluated for various common inorganic ions in solution. It is shown that complex Sm-2h is a multi-responsive fluorimetric sensor with high selectivity for F- and PO43- anions together with Zn2+ cation. The sensing process is rapid within 60 s for F- and PO43- ions and 300 s for Zn2+ ion. Further detailed responsive investigations suggest that its sensing behavior has excellent linear relationship between the fluorescence intensity (or absorption value) and ion concentration. The limit of detection (LOD) for sensing F-, PO43- and Zn2+ ions are as low as 2.61 μM (2.94 μM), 1.92 μM (1.64 μM) and 5.67 μM (3.53 μM), respectively, verified by fluorimetric (or colorimetric) titration experiments. ESI mass spectra prove that these efficient detections originate from the structure collapse of sensor Sm-2h because of the ion-induced imine bond breakage. Moreover, sensor Sm-2h shows excellent sensing performances for F-, PO43- and Zn2+ ions in real water samples, and we also have developed a convenient method to detect these three ions by use of the sensor impregnated test paper strips, providing rapid and distinguishable fluorimetric color changes. Therefore, the macrocyclic Sm(III) complex Sm-2h could be regarded as a valuable candidate for monitoring F-, PO43- and Zn2+ ions in practical applications.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China.
| | - Ting-Ting Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Cheng-Cheng Feng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Yin-Jing Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Zhuo-Ran Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Chaoying Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| |
Collapse
|
16
|
Wang J, Zhao L, Yan B. Indicator Displacement Assay Inside Dye-Functionalized Covalent Organic Frameworks for Ultrasensitive Monitoring of Sialic Acid, an Ovarian Cancer Biomarker. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12990-12997. [PMID: 32106673 DOI: 10.1021/acsami.0c00101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Identifying biomolecules for disease diagnosis requires simple, accurate, and reliable analytical techniques. Multiple signal transduction pathways have promoted the development of various biological analysis systems. However, most systems are largely limited by a single mechanism or model analysis, which can easily lead to false-positive/negative results. Herein, we report a covalent organic framework (COF) (TpPa-1) functionalized with a dye (fluorescein sodium) and design this hybrid material (TpPa-1@Dye) to fabricate hydrogels for subsequent analysis with the indicator displacement assay (IDA) method. Selecting a suitable metal cation (Cr3+) for the preparation of hydrogels can reduce the background fluorescence, improve the detection sensitivity, and increase the corresponding sensing selectivity. The TpPa-1@Dye functions as an indicator in the IDA-in-COF system, and Cr3+ is a receptor of the analyte (sialic acid (SA), a biomarker for ovarian cancer diagnosis). Based on the above studies, the integrative logic operations (AND + IMP) are further established, it helps in elucidating the design rules of the IDA-in-COF approach. This work represents the first effort in designing IDA-in-COF luminescent sensors with an On-Off-On mechanism to determine biomarkers and provides a new approach for developing hybrid COF luminescent materials as analysis platforms for human health monitoring.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
17
|
Yuan R, He H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00955e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on recent developments in the design and synthesis of luminescence MOFs for monitoring antibiotics.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun 130118
- P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
18
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
19
|
Zhang Y, Yan B. A point-of-care diagnostics logic detector based on glucose oxidase immobilized lanthanide functionalized metal-organic frameworks. NANOSCALE 2019; 11:22946-22953. [PMID: 31763645 DOI: 10.1039/c9nr06475c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a novel lanthanide functionalized metal organic framework enzyme (L-MOF-enzyme) composite has been first prepared via a surface attachment strategy between Eu3+@UMOF and glucose oxidase (GOx). Here, the Eu3+@UMOF can be used as a support for GOx immobilization and also a responsive fluorescent center towards glucose (Glu). The resulting material not only exhibits fascinating luminescence properties based on the 5D0→7F2 transition of Eu3+ and the catalytic performance of enzymes, but also some advantages of MOF-enzyme composites, including better stability, and great fluorescence selectivity and sensitivity towards Glu (detection limit = 0.2 μM). Besides, the composite exhibited an excellent selectivity and sensitivity towards Glu in serum and urine under room temperature and neutral conditions, which breaks the limitation of specific catalytic conditions of enzymes. Taking all the advantages of the L-MOF-enzyme composite, a point-of care (POC) diagnostics logic detector which can be used for the fluorescence detection of Glu in urine is designed. From the three outputs of the logic detector (L, M and H), we can intuitively realize the self-diagnosis of the three ranges of Glu concentrations that act as the inputs of the detector (0.1 μM-10 μM, 10 μM-10 mM, >10 mM) by the naked eye. The logic detector allows us, especially diabetics, to instantly detect glucose levels in the urine without going to the hospital for complicated inspections. This is the first attempt using L-MOFs combined with GOx to construct a POC diagnostics logic detector for fluorescence detection of Glu.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China and School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
20
|
Wang L, Xu H, Gao J, Yao J, Zhang Q. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213016] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Wang J, Yan B. Improving Covalent Organic Frameworks Fluorescence by Triethylamine Pinpoint Surgery as Selective Biomarker Sensor for Diabetes Mellitus Diagnosis. Anal Chem 2019; 91:13183-13190. [PMID: 31529947 DOI: 10.1021/acs.analchem.9b03534] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nitrogen-containing imine or hydrazone linked covalent organic frameworks (COFs) are poorly luminescent due to the fluorescence quenching by nitrogen atoms in the linkages, even if highly luminescent units and linkers are employed. The fluorescence quenching pathway to prevent linkage-originated to mitigate the inherent limitations of the linkage is a promising method for luminescent COFs. The generation of N- by deprotonation of the N-H unit eliminates the electron transfer from N lone pair to COF (TpPa-1) and enhances the luminescence. In this work, TpPa-1 achieved turn-on luminescence response with good sensitivity and reproducibility toward triethylamine (TEA) vapor in the process of deprotonation. The fabricated detector offers a viable approach for sensing ppm-level TEA, which can remind people to take timely measures to reduce the environmental hazards caused by TEA. The fluorescent sensor TpPa-1@LE constructed by the products of TpPa-1 and TEA can quantitatively trace biomarker methylglyoxal (MGO) for diabetes mellitus diagnosis in serum system. Furthermore, using TEA and MGO as input signals and the two fluorescence emissions G476 and Y525 as output signals, an advanced analytical device based on two Boolean logic gates with INH and AND function is constructed. This work provides a new strategy for improving the weak luminescence of COF in aqueous solution and realizes selective response to biomarker (MGO) for diabetes mellitus diagnosis.
Collapse
Affiliation(s)
- Jinmin Wang
- School of Chemical Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Bing Yan
- School of Chemical Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China.,School of Materials Science and Engineering , Liaocheng University , Liaocheng 252059 , China
| |
Collapse
|
22
|
Gu D, Yang W, Wang F, Li M, Liu L, Li H, Pan Q. A metal–organic gel‐based fluorescent chemosensor for selective Al
3+
detection. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongxu Gu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Lijuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| |
Collapse
|
23
|
Wang JM, Lian X, Yan B. Eu3+-Functionalized Covalent Organic Framework Hybrid Material as a Sensitive Turn-On Fluorescent Switch for Levofloxacin Monitoring in Serum and Urine. Inorg Chem 2019; 58:9956-9963. [DOI: 10.1021/acs.inorgchem.9b01106] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Min Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiao Lian
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
24
|
Yang AF, Hou SL, Shi Y, Yang GL, Qin DB, Zhao B. Stable Lanthanide–Organic Framework as a Luminescent Probe To Detect Both Histidine and Aspartic Acid in Water. Inorg Chem 2019; 58:6356-6362. [PMID: 30985116 DOI: 10.1021/acs.inorgchem.9b00562] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- An-Fei Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Guo-Li Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Da-Bin Qin
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry & Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| |
Collapse
|