1
|
Dong W, Wang Z, Cai Z, Deng Y, Wang G, Zheng B. Highly efficient CO 2 capture and chemical fixation of a microporous (3, 36)-connected txt-type Cu(II)-MOF with multifunctional sites. Dalton Trans 2024. [PMID: 39569821 DOI: 10.1039/d4dt01531b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Incorporating multiple functional sites in porous frameworks to enormously enhance the host-guest interactions is an effective strategy to obtain high-performance CO2 capture and chemical fixation MOF materials. Herein, we designed and constructed a microporous (3, 36)-connected txt-type Cu(II)-based MOF (HNUST-17) from dicopper(II)-paddlewheel clusters and a novel pyridine-based acylamide-linking V-shape diisophthalate ligand with amino groups. Interestingly, with a high density of multiple strong CO2-philic sites (open metal sites, acylamide and amino functionalities) integrated in the framework, which have been identified by GCMC (Grand canonical Monte Carlo) simulations and DFT (Density functional theory) calculations, HNUST-17 exhibits high and selective capture for CO2 over CH4 and N2 at ambient temperature. Moreover, HNUST-17 possesses efficiently catalytic activity and recyclability for chemical fixation of CO2 coupling with epoxides into cyclic carbonates in the presence of tetrabutylammonium bromide as the cocatalyst under mild, solvent-free conditions.
Collapse
Affiliation(s)
- Wenyu Dong
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zuxian Cai
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yiqiang Deng
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Chakraborty D, Chatterjee R, Mondal S, Das SK, Amoli V, Cho M, Bhaumik A. Construction of N-Rich Aminal-Linked Porous Organic Polymers for Outstanding Precombustion CO 2 Capture and H 2 Purification: A Combined Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48326-48335. [PMID: 37788172 DOI: 10.1021/acsami.3c11732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A large number of scientific investigations are needed for developing a sustainable solid sorbent material for precombustion CO2 capture in the integrated gasification combined cycle (IGCC) that is accountable for the industrial coproduction of hydrogen and electricity. Keeping in mind the industrially relevant conditions (high pressure, high temperature, and humidity) as well as good CO2/H2 selectivity, we explored a series of sorbent materials. An all-rounder player in this game is the porous organic polymers (POPs) that are thermally and chemically stable, easily scalable, and precisely tunable. In the present investigation, we successfully synthesized two nitrogen-rich POPs by extended Schiff-base condensation reactions. Among these two porous polymers, TBAL-POP-2 exhibits high CO2 uptake capacity at 30 bar pressure (57.2, 18.7, and 15.9 mmol g-1 at 273, 298, and 313 K temperatures, respectively). CO2/H2 selectivities of TBAL-POP-1 and 2 at 25 °C are 434.35 and 477.93, respectively. On the other hand, at 313 K the CO2/H2 selectivities of TBAL-POP-1 and 2 are 296.92 and 421.58, respectively. Another important feature to win the race in the search of good sorbents is CO2 capture capacity at room temperature, which is very high for TBAL-POP-2 (15.61 mmol g-1 at 298 K for 30 to 1 bar pressure swing). High BET surface area and good mesopore volume along with a large nitrogen content in the framework make TBAL-POP-2 an excellent sorbent material for precombustion CO2 capture and H2 purification.
Collapse
Affiliation(s)
- Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rupak Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Vipin Amoli
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Uttar Pradesh 229304, India
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Rawat A, Muhammad R, Chandra Srivastava V, Mohanty P. Identifying the Point of Attachment in the Hypercrosslinking of Benzene for the Synthesis of a Nanoporous Polymer as a Superior Adsorbent for High-Pressure CO 2 Capture Application. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anuj Rawat
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand247667, India
| | - Raeesh Muhammad
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand247667, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand247667, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand247667, India
| |
Collapse
|
5
|
Chowdhury A, Bhattacharjee S, Chatterjee R, Bhaumik A. A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang N, Wei Y, Chang M, Liu J, Wang JX. Macro-Meso-Microporous Metal-Organic Frameworks: Template-Assisted Spray Drying Synthesis and Enhanced Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10712-10720. [PMID: 35171564 DOI: 10.1021/acsami.1c23297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) are promising in many applications. However, most previous studies focus on HP-MOFs with two kinds of pore structures. Herein, a strategy for efficient construction of HP-MOFs possessing macro-meso-micropores using template-assisted spray drying followed by etching process is proposed. Taking ZIF-8 as an example, using polystyrene (PS) templates, the complete HP-ZIF-8 with all the three categories of pores can be easily fabricated. The close arrangement of intrinsic microporous nanosized ZIF-8 (N-ZIF-8) in the spray drying process results in the creation of mesopores, while the macropores are further generated after the removal of PS templates. The structures of macropores and mesopores can be easily adjusted by altering the size and proportion of PS and the size of N-ZIF-8, respectively. Furthermore, this method is extended to the preparation of HP-HKUST-1. As a proof-of-concept, HP-ZIF-8 displays excellent catalytic properties in Knoevenagel reaction owing to its unique pore features. Compared with conventional microsized ZIF-8 (M-ZIF-8) with similar size, HP-ZIF-8 achieves the significantly increased conversion of benzaldehyde from 55% to 100% within 3 h, and shows better recycling performance than N-ZIF-8.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Miao Chang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jingran Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
7
|
Wu M, Zhang H, Ge C, Wu J, Ma S, Yuan Y, Zhao L, Yao T, Zhang X, Yang Q. A stable lanthanum-based metal-organic framework as fluorescent sensor for detecting TNP and Fe 3+ with hyper-sensitivity and ultra-selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120276. [PMID: 34455379 DOI: 10.1016/j.saa.2021.120276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A new Lanthanum-based luminescent metal-organic framework, {[La(H2O)4(HL)]·H2O} (1), has been successfully synthesized by employing 3,3',5,5'-azodioxybenzenetetracarboxylic acid (H4L) as a rigid organic linker through the solvothermal reactions. 1 exhibits a two-dimensional (2D) layered structure and a three-dimensional (3D) supramolecular structure is formed by hydrogen bonds between the layers. Stability studies indicate that 1 has good chemical stability and thermostability. Meanwhile, the Ksv values for TNP is 4.61 × 104 M-1 with the LOD of 4.13 × 10-6 M and the Ksv value for Fe3+ is 1.22 × 104 M-1 with the LOD of 1.72 × 10-5 M, respectively, which demonstrated that 1 exhibits high sensitivity and excellent selectivity for the detection of TNP and Fe3+via fluorescence quenching. Significantly, 1 shows high regenerability after five recycling progress for sensing Fe3+. The possible mechanisms associated with the luminescent quenching are discussed in detail through some relevant experiments and tests, as well as the DFT calculations. Based on the above excellent properties of 1, it will have extremely potential to be used as a dual functional sensor for both detecting TNP and Fe3+ in aqueous solution, simultaneously.
Collapse
Affiliation(s)
- Maoquan Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Hongxia Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Chunyu Ge
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
| | - Shouchun Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Ye Yuan
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Liyan Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Tongjie Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
8
|
Sathish CI, Premkumar S, Chu X, Yu X, Breese MBH, Al‐Abri M, Al‐Muhtaseb AH, Karakoti A, Yi J, Vinu A. Microporous Carbon Nitride (C
3
N
5.4
) with Tetrazine based Molecular Structure for Efficient Adsorption of CO
2
and Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- CI Sathish
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| | - S. Premkumar
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Xueze Chu
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source National University of Singapore Singapore 117603 Singapore
| | - Mark B. H. Breese
- Singapore Synchrotron Light Source National University of Singapore Singapore 117603 Singapore
- Department of Physics National University of Singapore Singapore 119260 Singapore
| | - Mohammed Al‐Abri
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat Oman
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat Oman
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN) College of Engineering, Science, and Environment The University of Newcastle Callaghan New South Wales 2308 Australia
| |
Collapse
|
9
|
Sathish CI, Premkumar S, Chu X, Yu X, Breese MBH, Al-Abri M, Al-Muhtaseb AH, Karakoti A, Yi J, Vinu A. Microporous Carbon Nitride (C 3 N 5.4 ) with Tetrazine based Molecular Structure for Efficient Adsorption of CO 2 and Water. Angew Chem Int Ed Engl 2021; 60:21242-21249. [PMID: 34378296 DOI: 10.1002/anie.202108605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Mesoporous carbon nitrides with C3 N5 and C3 N6 stoichiometries created a new momentum in the field of organic metal-free semiconductors owing to their unique band structures and high basicity. Here, we report on the preparation of a novel graphitic microporous carbon nitride with a tetrazine based chemical structure and the composition of C3 N5.4 using ultra-stable Y zeolite as the template and aminoguanidine hydrochloride, a high nitrogen-containing molecule, as the CN precursor. Spectroscopic characterization and density functional theory calculations reveal that the prepared material exhibits a new molecular structure, which comprises two tetrazines and one triazine rings in the unit cell and is thermodynamically stable. The resultant carbon nitride shows an outstanding surface area of 130.4 m2 g-1 and demonstrates excellent CO2 adsorption per unit surface area of 47.54 μmol m-2 , which is due to the existence of abundant free NH2 groups, basic sites and microporosity. The material also exhibits highly selective sensing over water molecules (151.1 mmol g-1 ) and aliphatic hydrocarbons due to its unique microporous structure with a high amount of hydrophilic nitrogen moieties and recognizing ability towards small molecules.
Collapse
Affiliation(s)
- C I Sathish
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - S Premkumar
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xueze Chu
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore
| | - Mark B H Breese
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore.,Department of Physics, National University of Singapore, Singapore, 119260, Singapore
| | - Mohammed Al-Abri
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
10
|
|
11
|
Liu Y, Di Y, Qiao C, Liu M, Zhou C. A novel microporous metal–organic framework with Lewis basic sites and open O donor sites: Crystal structure and adsorption properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Heterometallic trinuclear cluster-based microporous metal-organic framework with high adsorption selectivity of CO2 over N2. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Peng H, Duan D, Tan X, Hu F, Ma J, Zhang K, Xu F, Li B, Sun L. A One‐Pot Method to Synthesize a Co‐Based Graphene‐Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongliang Peng
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Diancheng Duan
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiyou Tan
- Supervisory Office of the Joint Logistics Department of Guangzhou Military Region Guangzhou 510000 China
| | - Fang Hu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Jiaojun Ma
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Kexiang Zhang
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| |
Collapse
|
14
|
Liao J, Zeng W, Zheng B, Cao X, Wang Z, Wang G, Yang Q. Highly efficient CO 2 capture and conversion of a microporous acylamide functionalized rht-type metal–organic framework. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00231c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A microporous acylamide functionalized rht-type MOF (HNUST-9) with Lewis acidic open copper sites and CO2-philic acylamide groups exhibits high performance for CO2 capture, separation and chemical conversion.
Collapse
Affiliation(s)
- Junxiong Liao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Wenjiang Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Xiyang Cao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
15
|
Zhou F, Zheng B, Liu D, Wang Z, Yang Q. Large-Scale Structural Refinement and Screening of Zirconium Metal-Organic Frameworks for H 2S/CH 4 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46984-46992. [PMID: 31738502 DOI: 10.1021/acsami.9b17885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) with Zr6 inner cores represent a subfamily of nanoporous materials with good physicochemical stabilities, showing significant prospect for practical applications in various fields. Although computational characterization can play an important role that is complementary to experimental efforts, the availability of chemically realistic Zr-MOF structures is one of the prerequisites to accurately evaluate their performance as well as provide valuable insights for guiding material design. In this work, periodic density functional theory (DFT) calculations combined with a molecular mechanics method were performed to optimize the crystalline structures of over 182 experimentally synthesized Zr-MOFs that contain no less than 10-coordinated Zr6O8 nodes, leading to a database consisting of the structures having a diversity of topologies, pore sizes, and functionalities. Apart from determination of favorable configurations of organic linkers, rational proton topologies of the 11- and 10-coordinated Zr6O8 nodes were also clarified. Computational screening was further conducted to examine the H2S/CH4 separation properties of each material in the database. Significant difference were observed by comparing the separation properties of Zr-MOFs with optimized and nonoptimized structures. Some promising candidates with high H2S adsorption capacity and separation selectivity were identified on the basis of some evaluation metrics, and favorable organic linkers for designing new high-performance Zr-MOFs were also proposed.
Collapse
Affiliation(s)
- Fengxiang Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Baishu Zheng
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Dahuan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhaoxu Wang
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Qingyuan Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
16
|
Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki NS, Suib S, Srivastava R. Trends in Solid Adsorbent Materials Development for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34533-34559. [PMID: 31437393 DOI: 10.1021/acsami.9b08487] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A recent report from the United Nations has warned about the excessive CO2 emissions and the necessity of making efforts to keep the increase in global temperature below 2 °C. Current CO2 capture technologies are inadequate for reaching that goal, and effective mitigation strategies must be pursued. In this work, we summarize trends in materials development for CO2 adsorption with focus on recent studies. We put adsorbent materials into four main groups: (I) carbon-based materials, (II) silica/alumina/zeolites, (III) porous crystalline solids, and (IV) metal oxides. Trends in computational investigations along with experimental findings are covered to find promising candidates in light of practical challenges imposed by process economics.
Collapse
Affiliation(s)
- Maryam Pardakhti
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Tahereh Jafari
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Zachary Tobin
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Biswanath Dutta
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ehsan Moharreri
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Nikoo S Shemshaki
- Department of Biomedical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Steven Suib
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
17
|
Hao Y, Chen S, Zhou Y, Zhang Y, Xu M. Recent Progress in Metal-Organic Framework (MOF) Based Luminescent Chemodosimeters. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E974. [PMID: 31277318 PMCID: PMC6669767 DOI: 10.3390/nano9070974] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Metal-organic frameworks (MOFs), as a class of crystalline hybrid architectures, consist of metal ions and organic ligands and have displayed great potential in luminescent sensing applications due to their tunable structures and unique photophysical properties. Until now, many studies have been reported on the development of MOF-based luminescent sensors, which can be classified into two major categories: MOF chemosensors based on reversible host-guest interactions and MOF chemodosimeters based on the irreversible reactions between targets with a probe. In this review, we summarize the recently developed luminescent MOF-based chemodosimeters for various analytes, including H2S, HClO, biothiols, fluoride ions, redox-active biomolecules, Hg2+, and CN-. In addition, some remaining challenges and future perspectives in this area are also discussed.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Sun M, Zhang S, Zhang J, Xia W, Chen J, Yu X. Crystal structure and catalytic properties of a vanadium complex cis-[VO2(Him-py)(im-py)]2·3H2O. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1618848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Meng Sun
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Wen Xia
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Jialiang Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| |
Collapse
|
19
|
Liu HY, Gao GM, Bao FL, Wei YH, Wang HY. Enhanced water stability and selective carbon dioxide adsorption of a soc-MOF with amide-functionalized linkers. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
He M, Xu T, Jiang Z, Yang L, Zou Y, Xia F, Wang X, Wang X, He Y. Incorporation of bifunctional aminopyridine into an NbO-type MOF for the markedly enhanced adsorption of CO2 and C2H2 over CH4. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00195f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An NbO-type MOF based on an aminopyridine-heterobifunctionalized diisophthalate linker was synthesized, displaying markedly enhanced C2H2 and CO2 adsorption over CH4 compared to its parent compound.
Collapse
Affiliation(s)
- Minghui He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tingting Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zhenzhen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Luyao Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Ying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Fengjie Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Xia Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Xiaojuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
21
|
Li Y, Chen W, Gao R, Zhao Z, Zhang T, Xing G, Chen L. 2D covalent organic frameworks with built-in amide active sites for efficient heterogeneous catalysis. Chem Commun (Camb) 2019; 55:14538-14541. [DOI: 10.1039/c9cc07500c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two new amide functionalized covalent organic frameworks (COFs) were synthesized via a bottom-up strategy and used as heterogeneous catalysts toward Knoevenagel condensation with excellent performance.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Weiben Chen
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Ruidong Gao
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Ziqiang Zhao
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Ting Zhang
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Guolong Xing
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| | - Long Chen
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
22
|
Lv C, Li W, Zhou Y, Li J, Lin Z. A new porous Ca(II)-organic framework with acylamide decorated pores for highly efficient CO2 capture. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Xiang RQ, Niu YF, Han J, Lau YL, Wu HH, Zhao XL. A neutral Cu-based MOF for effective quercetin extraction and conversion from natural onion juice. RSC Adv 2019; 9:33716-33721. [PMID: 35528871 PMCID: PMC9073668 DOI: 10.1039/c9ra04551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022] Open
Abstract
A new neutral metal–organic framework can efficiently extract natural product quercetin (QT) from fresh QT-rich onion juice and rapidly convert it into Cu–QT with a relatively high conversion rate.
Collapse
Affiliation(s)
- Rui-Qi Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Jie Han
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Yat-Long Lau
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
24
|
Duan C, Yang M, Li F, Li Y, Peng A, Luo S, Xi H. Soft‐templating Synthesis of Mesoporous Metal–Organic Frameworks with Enhanced Toluene Adsorption Capacity. ChemistrySelect 2018. [DOI: 10.1002/slct.201802940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chongxiong Duan
- School of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road, Tianhe District Guangzhou 510640 China
| | - Minhui Yang
- School of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road, Tianhe District Guangzhou 510640 China
| | - Feier Li
- School of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road, Tianhe District Guangzhou 510640 China
| | - Yanyan Li
- School of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road, Tianhe District Guangzhou 510640 China
| | - Anguo Peng
- School of nuclear science technologyUniversity of South China, Hunan 421001 PR China
| | - Shaojuan Luo
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Hongxia Xi
- School of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road, Tianhe District Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution ControlSouth China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
25
|
Zheng B, Luo X, Wang Z, Zhang S, Yun R, Huang L, Zeng W, Liu W. An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH4/CO2 gas storage/separation and acid–base cooperative catalytic activity. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00662h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HNUST-8 exhibits water stable, efficient CH4/CO2 storage and separation, acid–base cooperative catalytic activity in a tandem deacetalization Knoevenagel densation.
Collapse
Affiliation(s)
- Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Xin Luo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Ruirui Yun
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- China
| | - Lu Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Wenjiang Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Wenlong Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|