1
|
Aftab S, Hegazy HH. Emerging Trends in 2D TMDs Photodetectors and Piezo-Phototronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205778. [PMID: 36732842 DOI: 10.1002/smll.202205778] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Indexed: 05/04/2023]
Abstract
The piezo-phototronic effect shows promise with regards to improving the performance of 2D semiconductor-based flexible optoelectronics, which will potentially open up new opportunities in the electronics field. Mechanical exfoliation and chemical vapor deposition (CVD) influence the piezo-phototronic effect on a transparent, ultrasensitive, and flexible van der Waals (vdW) heterostructure, which allows the use of intrinsic semiconductors, such as 2D transition metal dichalcogenides (TMD). The latest and most promising 2D TMD-based photodetectors and piezo-phototronic devices are discussed in this review article. As a result, it is possible to make flexible piezo-phototronic photodetectors, self-powered sensors, and higher strain tolerance wearable and implantable electronics for health monitoring and generation of piezoelectricity using just a single semiconductor or vdW heterostructures of various nanomaterials. A comparison is also made between the functionality and distinctive properties of 2D flexible electronic devices with a range of applications made from 2D TMDs materials. The current state of the research about 2D TMDs can be applied in a variety of ways in order to aid in the development of new types of nanoscale optoelectronic devices. Last, it summarizes the problems that are currently being faced, along with potential solutions and future prospects.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
- 2Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P. O. Box 9004, Saudi Arabia
| |
Collapse
|
2
|
Yang JS, Zhao L, Li SQ, Liu H, Wang L, Chen M, Gao J, Zhao J. Accurate electronic properties and non-linear optical response of two-dimensional MA2Z4. NANOSCALE 2021; 13:5479-5488. [PMID: 33687047 DOI: 10.1039/d0nr09146d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional MA2Z4 (M = Mo, W, V, Nb, Ta, Ti, Zr, Hf, or Cr; A = Si or Ge; Z = N, P, or As) is a new lead in the 2D family, because it exhibits versatile properties by tuning the components M, A and Z. However, theoretical studies on MA2Z4 are quite limited, and electronic properties are mainly studied by standard DFT levels, which seriously underestimates the band gap. Here, we systematically investigated the electronic properties and nonlinear optical response of MA2Z4 using a hybrid HSE06 functional. It was found that replacing component Z changes the lattice constant most, while the lattice influence by component M substitution is only slight. We showed that the gap difference between PBE and HSE06 is generally about 30% but can be up to 101%. (MIV = Hf, Ti, or Zr)Si2N4 possesses multi-valley characteristics. Furthermore, the second-harmonic generation (SHG) responses of various MA2Z4 composites were also calculated. Three non-zero elements of second order non-linear susceptibilities are revealed for MA2Z4 with the relationship: d16 = d21 = d22, indicating that MA2Z4 belongs to the D3H1 space group. HfSi2N4 possesses a multi-valley characteristic, and exhibits the largest susceptibility under broad wavelengths and the value of d21 reaches 3697.04 pm V-1 at band gap resonance energy. Intriguingly, the non-linear coefficients of MoSi2P4 and MoSi2As4 in the IR region are two orders of magnitude larger than those of other well-known non-linear crystals, such as LiGaS2 and BaAl4S7. We further explored the anisotropic SHG response by the polar plot of intensity under different incident light into MA2Z4. Our work provides theoretical guidelines for further experimental explorations of MA2Z4 and paves the way for its utilization in non-linear optic devices.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Luneng Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Shi-Qi Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Hongsheng Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Junfeng Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, School of Physics, Dalian 116024, China.
| |
Collapse
|
3
|
Quan Y, Su R, Hu M, Lang J, Fan H, Shen H, Gao M, Li B, Liu Y, Yang J. Construction of an MZO heterojunction system with improved photocatalytic activity for degradation of organic dyes. CrystEngComm 2020. [DOI: 10.1039/d0ce00581a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aiming at the challenging problems in environmental remediation, we have designed a novel MZO heterojunction material for applications in photocatalysis.
Collapse
|
4
|
Procopio EF, Pedrosa RN, L. de Souza FA, Paz WS, Scopel WL. Tuning the photocatalytic water-splitting capability of two-dimensional α-In2Se3 by strain-driven band gap engineering. Phys Chem Chem Phys 2020; 22:3520-3526. [DOI: 10.1039/c9cp06023e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have investigated the effects of in-plane mechanical strains on the electronic properties of single-layer α-In2Se3 by means of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Erik F. Procopio
- Department of Physics – Federal University of Espirito Santo
- Goiabeiras
- Brazil
| | - Renan N. Pedrosa
- Department of Physics – Federal University of Espirito Santo
- Goiabeiras
- Brazil
| | - Fábio A. L. de Souza
- Federal Institute of Education
- Science and Technology of Espírito Santo
- Ibatiba/ES
- Brazil
| | - Wendel S. Paz
- Department of Physics – Federal University of Espirito Santo
- Goiabeiras
- Brazil
| | - Wanderlã L. Scopel
- Department of Physics – Federal University of Espirito Santo
- Goiabeiras
- Brazil
| |
Collapse
|
5
|
Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J, Zhang W. Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. NANO LETTERS 2019; 19:2634-2640. [PMID: 30841699 DOI: 10.1021/acs.nanolett.9b00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two-dimensional material indium selenide (InSe) has offered a new platform for fundamental research in virtue of its emerging fascinating properties. Unlike 2H-phase transition-metal dichalcogenides (TMDs), ε phase InSe with a hexagonal unit cell possesses broken inversion symmetry in all the layer numbers, and predicted to have a strong second harmonic generation (SHG) effect. In this work, we find that the as-prepared pure InSe, alloyed InSe1- xTe x and InSe1- xS x ( x = 0.1 and 0.2) are ε phase structures and exhibit excellent SHG performance from few-layer to bulk-like dimension. This high SHG efficiency is attributed to the noncentrosymmetric crystal structure of the ε-InSe system, which has been clearly verified by aberration-corrected scanning transmission electron microscopy (STEM) images. The experimental results show that the SHG intensities from multilayer pure ε-InSe and alloyed InSe0.9Te0.1 and InSe1- xS x ( x = 0.1 and 0.2) are around 1-2 orders of magnitude higher than that of the monolayer TMD systems and even superior to that of GaSe with the same thickness. The estimated nonlinear susceptibility χ(2) of ε-InSe is larger than that of ε-GaSe and monolayer TMDs. Our study provides first-hand information about the phase identification of ε-InSe and indicates an excellent candidate for nonlinear optical (NLO) applications as well as the possibility of engineering SHG response by alloying.
Collapse
Affiliation(s)
- Qiaoyan Hao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Huan Yi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Huimin Su
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Bin Wei
- International Iberian Nanotechnology Laboratory , Av. Mestre Jose Veiga , P-4715330 Braga , Portugal
| | - Zhuo Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Zhezhu Lao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yang Chai
- Department of Applied Physics , Hong Kong Polytechnic University , Hong Kong 999077 , P. R. China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory , Av. Mestre Jose Veiga , P-4715330 Braga , Portugal
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Junfeng Dai
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| |
Collapse
|
6
|
Hu L, Yi W, Tang J, Rao T, Ma Z, Hu C, Zhang L, Li T. Planar graphitic ZnS, buckling ZnS monolayers and rolled-up nanotubes as nonlinear optical materials: first-principles simulation. RSC Adv 2019; 9:25336-25344. [PMID: 35530066 PMCID: PMC9070014 DOI: 10.1039/c9ra05419g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023] Open
Abstract
Nonlinear optical (NLO) materials have an ability to generate new coherent light. At the present stage, three dimensional (3D) mid-infrared NLO materials suffer from various deficiencies such as low laser damage thresholds (LDTs) for AgGaQ2 (Q = S, Se); the band gaps of most intensively studied two-dimensional (2D) NLO materials are not wide enough to avoid two-photon absorption (TPA); a steady NLO property regardless of diameter and chirality is absent in one-dimensional (1D) single-walled nanotubes (SWNTs). In this research, the electronic and second harmonic generation (SHG) properties of planar graphitic ZnS (g-ZnS) monolayer, buckling reconstructed ZnS (R-ZnS) monolayer which is synthesized in a recent experiment, and rolled-up SWNTs are investigated with first-principles simulations. Theoretical results suggest the SHG coefficients of planar g-ZnS, buckling R-ZnS and rolled-up SWNTs are comparable with that of AgGaS2 crystals. The band gaps of planar g-ZnS and ZnS SWNTs are ∼3.8 eV, and that of buckling R-ZnS is as wide as ∼4.0 eV, indicating high LDTs and reduced TPA as NLO materials. The TPA edges can be further blue shifted by using incident light beams with a polarized electric field perpendicular to buckling R-ZnS. On the other hand, the TPA edges of ZnS SWNTs are nearly not affected by diameter and chirality. The SHG coefficients of ZnS SWNTs are much less influenced by chirality and diameter than those of SiC, GeC and BN SWNTs. Therefore, they are superior ultrathin NLO materials, and especially have a potential application in the mid-infrared regime where high-quality NLO crystals are emergently needed. Contradictory large SHG coefficients and wide bandgaps are simultaneously discovered in planar graphitic ZnS, buckling ZnS monolayers and rolled-up nanotubes.![]()
Collapse
Affiliation(s)
- Lei Hu
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| | - Wencai Yi
- School of Physics and Physical Engineering
- Qufu Normal University
- Qufu
- China
| | - Jianting Tang
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| | - Tongde Rao
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| | - Zuju Ma
- School of Materials Science and Engineering
- Anhui University of Technology
- Maanshan
- China
| | - Chuanbo Hu
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| | - Lei Zhang
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| | - Tingzhen Li
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
- Chongqing
- China
| |
Collapse
|