1
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
2
|
Fang H, Zheng B, Zhang ZH, Jin PB, Li HX, Zheng YZ, Xue DX. Desolvation-Degree-Induced Structural Dynamics in a Rigid Cerium-Organic Framework Exhibiting Tandem Purification of Ethylene from Acetylene and Ethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44460-44469. [PMID: 36125797 DOI: 10.1021/acsami.2c13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the industrial requirements for high production and high quality of ethylene, efficient purification of ethylene from acetylene and ethane is of prime importance but challenging. Dynamic metal-organic frameworks (MOFs) have demonstrated intriguing structural dynamics and diverse applications recently. Among them, although a few flexible ones have exhibited interesting ethylene purification capability, rigid ones were yet barely investigated for such purpose. In this regard, a cerium(III)-based MOF was solvothermally synthesized, which is rigid and assembled from rod molecular building blocks associated with coordinative N,N-dimethylformamide (DMF) molecules. After liberating different degrees of DMF ligands via heating under vacuum or acetone exchange, both partially desolvated compounds of Ce-MOF-1 and Ce-MOF-2 were concertedly isolated in a fashion of single-crystal to single-crystal transformation. Although both newly generated materials crystallize in the same space group, they exhibit dissimilar unit cell parameters and slightly distinct ultramicropore sizes and pore microenvironments, thanks to the discrepancy in the desolvation degree. Consequently, Ce-MOF-1 and Ce-MOF-2 individually demonstrate C2H2- and C2H6-selective adsorption behavior, resulting in the potential tandem separation of C2H4 from C2H2 and C2H6 mixtures. The above results were successfully supported by not only single gas adsorption isotherms but also grand canonical Monte Carlo (GCMC) calculation studies and dynamic breakthrough experiments. The present work may pave the way for rigid MOFs aiming at advancing applications via solid-state structural dynamics.
Collapse
Affiliation(s)
- Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Zheng
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Peng-Bo Jin
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, Shaanxi, China
| | - Hong-Xin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, Shaanxi, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Lu TT, Fan YY, Wang XN, Wang Q, Li B. A microporous chromium-organic framework fabricated via solvent-assisted metal metathesis for C 2H 2/CO 2 separation. Dalton Trans 2022; 51:11658-11664. [PMID: 35822599 DOI: 10.1039/d2dt01546c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Removal of CO2 or C2H4 from C2H2 is still a challenging task due to their similar physical-chemical properties. Here, a bifunctional ligand decorated with amino and sulfoxide groups, 5',5''''-sulfonylbis (2'-amino-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid) (H4L), was employed to construct a new microporous iron-organic framework (Fe-MOF) with the formula [(Fe3O)(L)1.5(H2O)3]n. This MOF can serve as a parent structure to obtain the isostructural Cr-MOF by solvent-assisted metal metathesis. Furthermore, the gas adsorption and separation performance of these two MOFs were systematically investigated. Compared to Fe-MOF, Cr-MOF shows a moderately higher CO2, C2H2 and C2H4 uptake capacity. Additionally, Cr-MOF can selectively adsorb C2H2 over CO2 and C2H4. The separation potential towards C2H2/C2H4 and C2H2/CO2 was further established via IAST calculations of mixture adsorption equilibrium. IAST selectivity values of Cr-MOF are 3.4 for C2H2/C2H4 and 6.9 for C2H2/CO2 at 298 K and initial pressure, indicating its potential C2H2 separation ability.
Collapse
Affiliation(s)
- Ting-Ting Lu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Ying-Yi Fan
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Xiao-Ning Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Qiang Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
| |
Collapse
|
4
|
Acharya SR, Elias A, Tan K, Jensen S, Lin RB, Chen B, Gross MD, Thonhauser T. Identifying the Gate-Opening Mechanism in the Flexible Metal-Organic Framework UTSA-300. Inorg Chem 2022; 61:5025-5032. [PMID: 35290060 DOI: 10.1021/acs.inorgchem.1c03931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic-level understanding of the gate-opening phenomenon in flexible porous materials is an important step toward learning how to control, design, and engineer them for applications such as the separation of gases from complex mixtures. Here, we report such mechanistic insight through an in-depth study of the pressure-induced gate-opening phenomenon in our earlier reported metal-organic framework (MOF) Zn(dps)2(SiF6) (dps = 4,4'-dipyridylsulfide), also called UTSA-300, using isotherm and calorimetry measurements, in situ infrared spectroscopy, and ab initio simulations. UTSA-300 is shown to selectively adsorb acetylene (C2H2) over ethylene (C2H4) and ethane (C2H6) and undergoes an abrupt gate-opening phenomenon, making this framework a highly selective gas separator of this complex mixture. The selective adsorption is confirmed by pressure-dependent in situ infrared spectroscopy, which, for the first time, shows the presence of multiple C2H2 species with varying strengths of bonding. A rare energetic feature at the gate-opening condition of the flexible MOF is observed in our differential heat energies, directly measured by calorimetry, showcasing the importance of this tool in adsorption property exploration of flexible frameworks and offering an energetic benchmark for further energy-based fundamental studies. Based on the agreement of this feature with ab initio-based adsorption energies of C2H2 in the closed-pore structure UTSA-300a ("a" refers to the activated form), this feature is assigned to the weakening of the H-bond C-H···F formed between C2H2 and fluorine of the MOF. Our analysis identifies the weakening of this H-bond, the expansion of the closed-pore MOF upon successive C2H2 coadsorption until its volume is close to that of the open-pore MOF, and the spontaneous gate opening to energetically favor C2H2 adsorption in the open-pore structure as crucial steps in the gate-opening mechanism in this system.
Collapse
Affiliation(s)
- Shree Ram Acharya
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Anthony Elias
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Kui Tan
- Department of Material Science and Engineering, The University of Texas at Dallas, Dallas, Texas 75080, United States
| | - Stephanie Jensen
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangdong 510006, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael D Gross
- Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Engineering, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Timo Thonhauser
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
5
|
Chen K, Mousavi SH, Singh R, Snurr RQ, Li G, Webley PA. Gating effect for gas adsorption in microporous materials-mechanisms and applications. Chem Soc Rev 2022; 51:1139-1166. [PMID: 35040460 DOI: 10.1039/d1cs00822f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past two decades, various microporous materials have been developed as useful adsorbents for gas adsorption for a wide range of industries. Considerable efforts have been made to regulate the pore accessibility in microporous materials for the manipulation of guest molecules' admission and release. It has long been known that some microporous adsorbents suddenly become highly accessible to guest molecules at specific conditions, e.g., above a threshold pressure or temperature. This anomalous adsorption behavior results from a gating effect, where a structural variation of the adsorbent leads to an abrupt change in the gas admission. This review summarizes the mechanisms of the gating effect, which can be a result of the deformation of the framework (e.g., expansion, contraction, reorientation, and sliding of the unit cells), the vibration of the pore-keeping groups (e.g., rotation, swing, and collapse of organic linkers), and the oscillation of the pore-keeping ions (e.g. cesium, potassium, etc.). These structural variations are induced either by the host-guest interaction or by an external stimulus, such as temperature or light, and account for the gating effect at a threshold value of the stimulus. Emphasis is given to the temperature-regulated gating effect, where the critical admission temperature is dictated by the combined effect of the gate opening and thermodynamic factors and plays a key role in regulating guest admission. Molecular simulations can improve our understanding of the gate opening/closing transitions at the atomic scale and enable the construction of quantitative models to describe the gated adsorption behaviour at the macroscale level. The gating effect in porous materials has been widely applied in highly selective gas separation and offers great potential for gas storage and sensing.
Collapse
Affiliation(s)
- Kaifei Chen
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Seyed Hesam Mousavi
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ranjeet Singh
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Gang Li
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, VIC 3800, Australia.
| |
Collapse
|
6
|
Wen GL, Liu SQ, Li M. Two mixed-ligand coordination polymers: treatment activity on coronary artery heart disease by reducing the inflammatory response in the vascular endothelial cells. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1966445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Guang-Lian Wen
- Disinfection Supply Room, First People’s Hospital of Jinan, Jinan, Shandong, China
| | - Shi-Qing Liu
- Static Distribution Center, People's Hospital of Jiyang District, Jinan, Shandong, China
| | - Meng Li
- Human Resources Department, Jinan Central Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Tian XY, Zhou HL, Zhang XW, Wang C, Qiu ZH, Zhou DD, Zhang JP. Two Isostructural Flexible Porous Coordination Polymers Showing Contrasting Single-Component and Mixture Adsorption Properties for Propylene/Propane. Inorg Chem 2020; 59:6047-6052. [DOI: 10.1021/acs.inorgchem.0c00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiao-Yun Tian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Long Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ze-Hao Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Anand B, Szulejko JE, Kim KH, Ahn WS, Son YS. The effects of continuous- and stop-flow gas streams on adsorptive removal of benzene vapor using type - II covalent organic polymers. ENVIRONMENTAL RESEARCH 2020; 182:109043. [PMID: 31896470 DOI: 10.1016/j.envres.2019.109043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Various materials have been investigated for the adsorptive removal of volatile organic compounds (VOCs, such as benzene). However, most materials proposed for the adsorptive removal of gaseous benzene (and other VOCs) perform relatively poorly (e.g., an impractically low-service 10% breakthrough volume [BTV10] at < 100 ppm). The adsorbent uptake rate (mg g-1 min-1) can also be assessed as a function of the gas-stream flow rate (or space velocity). The main aim of this study is to explore the effect of two different gas-stream supply modes - stopped flow (at a fixed stream flow rate of 330 mL atm min-1) vs. continuous flow (a variable-stream flow rate of 100, 200, or 330 mL atm min-1) on the adsorption metrics of gaseous benzene on 5 mg of two types of - II covalent organic polymers (COPs: CBAP-1 [DETA], CD; or CBAP-1 [EDA], CE). The sorbent tube outlet stream was sampled by two respective sampling methods (i.e., a large-volume injector [LVI] for stopped flow vs. syringe injection [SI] for continuous flow) for sample quantitation by gas chromatography flame-ionization detection (GC-FID). The observed BTV10 values in the two sampling modes were similar when tested using 10 ppm benzene, irrespective of sorbents: 56/60 (CD) vs. 620/624 L atm g-1 (CE). BTV10 values increased systematically with decreasing stream-flow rates to reflect the importance of space velocity in adsorptive removal of benzene. The overall assessment of adsorption performance between stopped flow (LVI) and continuous flow (SI) revealed that the performance of the adsorbent is independent of flow mode (e.g., when performance was compared at flow rate of 330 mL min-1).
Collapse
Affiliation(s)
- Bhaskar Anand
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea
| | - Youn-Suk Son
- Department of Environmental Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Li YH, Gai LX, Zhang CG, Zhang CC, Liu XJ, Hou B, Wu X. Effects of Substituent Groups on the Crystal Structures and Anti-Cervical Cancer Activity of Zero-/Two-Dimensional Cu(II) Complexes. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Qiao J, Liu X, Liu X, Liu X, Zhang L, Liu Y. Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for gas adsorption and separation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00641f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pcu type Cu-MOFs based on urea-functionalized ligands have been synthesized by a pillared-layer strategy. Compound 1 shows good adsorption and separation behaviors of CO2, C2H6, and C3H8 over CH4, compound 2 exhibits a gate-opening behavior for N2 adsorption.
Collapse
Affiliation(s)
- Junyi Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xueshibojie Liu
- Department of Otolaryngology
- Head and Neck Surgery
- Second Hospital of Jilin University
- Changchun 130000
- P. R. China
| | - Xin Liu
- Department of Chemistry
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
11
|
Tian YY, Xin ZG, Hou HF, Zhu XC, Guo Q, Xiao Q. Two/zero-dimensional Cu(II) complexes inhibit atrial myxoma cells via apoptosis. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Lan W, Zhou Z, Jia FC, Hao X, Dou Y, Yang L, Liu H, Liu Q, Zhang D. A new three-dimensional cobalt(II) coordination polymer based on V-shaped 3,4'-oxydibenzoate: synthesis, crystal structure and magnetic properties. Acta Crystallogr C Struct Chem 2019; 75:990-995. [PMID: 31271389 DOI: 10.1107/s2053229619008337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/12/2019] [Indexed: 11/10/2022] Open
Abstract
A new coordination polymer (CP), namely poly[(μ-4,4'-bipyridine)(μ3-3,4'-oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4'-obb)(4,4'-bipy)]n (1), was prepared by the self-assembly of Co(NO3)2·6H2O with the rarely used 3,4'-oxydibenzoic acid (3,4'-obbH2) ligand and 4,4'-bipyridine (4,4'-bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction reveals that each CoII ion is six-coordinated by four O atoms from three 3,4'-obb2- ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4'-bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4'-obb2- ligands, affording an eight-membered Co2O4C2 ring which is further extended into a two-dimensional [Co(3,4'-obb)]n sheet along the ab plane via 3,4'-obb2- functioning as a bidentate bridging ligand. The planes are interlinked into a three-dimensional [Co(3,4'-obb)(4,4'-bipy)]n network by 4,4'-bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π-π interactions between the parallel 4,4'-bipy ligands.
Collapse
Affiliation(s)
- Wenlong Lan
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Zhen Zhou
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Fu Chao Jia
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaoyun Hao
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yong Dou
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Lu Yang
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Liu
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China
| | - Daopeng Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|
13
|
Barnett BR, Gonzalez MI, Long JR. Recent Progress Towards Light Hydrocarbon Separations Using Metal–Organic Frameworks. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Kurisingal JF, Rachuri Y, Gu Y, Choe Y, Park DW. Fabrication of hierarchically porous MIL-88-NH2(Fe): a highly efficient catalyst for the chemical fixation of CO2 under ambient pressure. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01163c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A hierarchically micro- and mesoporous MIL-88-NH2 metal organic framework was prepared through an easy template directed methodology.
Collapse
Affiliation(s)
| | - Yadagiri Rachuri
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Yunjang Gu
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Youngson Choe
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Dae-Won Park
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| |
Collapse
|
15
|
Gao FX, Ye YJ, Zhao LT, Liu DH, Li Y. A porous Zn-based metal-organic framework with an expanded tricarboxylic acid ligand for effective CO2 capture and CO2/CH4 separation. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
He YC, Yu Y, Wang L, Yang J, Kan WQ, Yang Y, Fan YY, Jing Z, You J. A novel metal–organic framework based on hexanuclear Co(ii) clusters as an anode material for lithium-ion batteries. CrystEngComm 2018. [DOI: 10.1039/c8ce01039k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new metal–organic framework, [Co(L)]·1.5H2O (1), has been successfully synthesized, where its electrochemical application has been investigated.
Collapse
Affiliation(s)
- Yuan-Chun He
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yang Yu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Lingyan Wang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jiaqin Yang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Wei-Qiu Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huaian 223300
- P. R. China
| | - Yan Yang
- School of Materials Science and Chemical Engineering
- Xi'an Technological University
- Xi'an 710021
- P. R. China
| | - Yao-Yao Fan
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Zhihong Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinmao You
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
- Key Laboratory of Tibetan Medicine Research
| |
Collapse
|