1
|
Brager DM, Panchal AJ, Cahill CL. A Spectroscopic and Computational Evaluation of Uranyl Oxo Engagement with Transition Metal Cations. Inorg Chem 2024; 63:11155-11167. [PMID: 38829561 DOI: 10.1021/acs.inorgchem.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We report the synthesis and characterization of five novel Cd2+/UO22+ heterometallic complexes that feature Cd-oxo distances ranging from 78 to 171% of the sum of the van der Waals radii for these atoms. This work marks an extension of our previously reported Pb2+/UO22+ and Ag+/UO22+ complexes, yet with much more pronounced structural and spectroscopic effects resulting from Cd-oxo interactions. We observe a major shift in the U═O symmetric stretch and significant uranyl bond length asymmetry. The ρbcp values calculated using Quantum Theory of Atoms in Molecules (QTAIM) support the asymmetry displayed in the structural data and indicate a decrease in covalent character in U═O bonds with close Cd-oxo contacts, more so than in related compounds containing Pb2+ and Ag+. Second-order perturbation theory (SOPT) analysis reveals that O spx → Cd s is the most significant orbital overlap and U═O bonding and antibonding orbitals also contribute to the interaction (U═O σ/π → Cd d and Cd s → U═O σ/π*). The overall stabilization energies for these interactions were lower than those in previously reported Pb2+ cations, yet larger than related Ag+ compounds. Analysis of the equatorial coordination sphere of the Cd2+/UO22+ compounds (along with Pb2+/UO22+ complexes) reveals that 7-coordinate uranium favors closer, stronger Mn+-oxo contacts. These results indicate that U═O bond strength tuning is possible with judicious choice of metal cations for oxo interactions and equatorial ligand coordination.
Collapse
Affiliation(s)
- Dominique M Brager
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| | - Ahan J Panchal
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| | - Christopher L Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
2
|
Herder JA, Kruse SJ, Nicholas AD, Forbes TZ, Walter ED, Cho H, Cahill CL. Systematic Study of Solid-State U(VI) Photoreactivity: Long-Lived Radicalization and Electron Transfer in Uranyl Tetrachloride. Inorg Chem 2024; 63:4957-4971. [PMID: 38437845 DOI: 10.1021/acs.inorgchem.3c04144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Reported are the syntheses, structural characterizations, and luminescence properties of three novel [UO2Cl4]2- bearing compounds containing substituted 1,1'-dialkyl-4,4'-bipyridinum dications (i.e., viologens). These compounds undergo photoinduced luminescence quenching upon exposure to UV radiation. This reactivity is concurrent with two phenomena: radicalization of the uranyl tetrachloride anion and photoelectron transfer to the viologen which constitutes the formal transfer of one electron from [UO2Cl4]2- to the viologen species. This behavior is elucidated using electron paramagnetic resonance (EPR) spectroscopy and further probed through a series of characterization and computational techniques including Rehm-Weller analysis, time-dependent density functional theory (TD-DFT), and density of states (DOS). This work provides a systematic study of the photoreactivity of the uranyl unit in the solid state, an under-described aspect of fundamental uranyl chemistry.
Collapse
Affiliation(s)
- Jordan A Herder
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| | - Samantha J Kruse
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, Iowa 55242, United States
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, Iowa 55242, United States
| | - Eric D Walter
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Herman Cho
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Christopher L Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
3
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
4
|
Choi S, Lee DW, Kim TH, Lim SH, Yun JI. Thermodynamic, Spectroscopic, and Structural Study on a Sodium Uranyl Tri-2-Methoxybenzoate Dodecahydrate Coordination Compound with Considerably Low Solubility in Acidic Conditions. Inorg Chem 2023; 62:756-768. [PMID: 36580487 DOI: 10.1021/acs.inorgchem.2c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A spontaneous crystallization of an uranium(VI)-organic coordination compound with sodium and 2-methoxybenzoate (2-mba) was observed in acidic solutions, and the solubility product, molecular vibrations, crystal structure, thermal stability, and emission properties of the atypically low-soluble U(VI) complex (Na[UO2(2-mba)3]·12H2O(s)) were fully investigated for the first time. A long-term solubility experiment and speciation modeling gave a solubility product of log Ks,0 = -12.18 ± 0.02 (T = 25 °C and I = 0.1 M NaClO4), and vibrational analyses confirmed the overall molecular structure of complex and the frequencies of characteristic stretching motions of uranyl moiety as well. The crystal quality of Na[UO2(2-mba)3]·12H2O(s) was improved by a digestion method, and X-ray diffraction analysis of the single crystalline specimen verified that the newly studied uranyl-organic compound contains one-dimensional channels with a diameter of 20 Å along the [001] direction; the sodium and water molecules are arranged in the channel structures. In the coordination environment around uranyl, three aromatic carboxylates are symmetrically bound in the equatorial plane of uranyl coplanarily, and the unit [UO2(2-mba)3]- complexes are further extended along the plane to form the layered-morphologies. The three-dimensional packing of [UO2(2-mba)3]- anions is driven by the parallel-displaced π-stacking of aromatic rings with a centroid-centroid distance of 3.7 Å. Additional thermogravimetric analysis confirmed that the Na[UO2(2-mba)3]·12H2O(s) is stable up to 250 °C, and dehydration and release of the organic ligand were subsequently observed beyond that temperature. Photoluminescence spectrum of the Na[UO2(2-mba)3]·12H2O(s) clearly displayed the characteristic U(VI) emission, and a band spacing between the ground electronic states of U(VI) uranyl was evaluated to be 831 ± 14 cm-1. Such detailed characterization of the unique Na[UO2(2-mba)3]·12H2O(s) is advancing upon a systematic understanding of the structural effects of the aromatic model ligands on U(VI) complexation, with relevance to the environmental chemistry of U(VI) and crystal engineering for development of diverse uranyl-organic frameworks.
Collapse
Affiliation(s)
- Seonggyu Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea.,Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon34057, Republic of Korea
| | - Dong Woo Lee
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute (KAERI), Daejeon34057, Republic of Korea
| | - Tae-Hyeong Kim
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute (KAERI), Daejeon34057, Republic of Korea
| | - Sang Ho Lim
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute (KAERI), Daejeon34057, Republic of Korea
| | - Jong-Il Yun
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
5
|
Jennifer SJ, Razak IA, Ebenezer C, Solomon RV. Role of Cl• • •Cl halogen bonds in tuning the crystals of Uranyl-Dicholorothiophene carboxylate based hybrid cluster materials through N-donor counter ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Autillo M, Wilson RE, Vasiliu M, de Melo GF, Dixon DA. Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties. Inorg Chem 2022; 61:15607-15618. [PMID: 36130052 DOI: 10.1021/acs.inorgchem.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of actinyl(VI) nitrate salts of the form MAnO2(NO3)3, where M = NH4+ K+, Rb+, Cs+, and Me4N+ and AnO22+ = U, Np, Pu, and AnO2(NO3)2(H2O)2·H2O, and the uranyl tetranitrates M2UO2(NO3)4 have been synthesized from aqueous solution and their structures determined using single-crystal X-ray diffraction. Together, these complexes represent an isostructural series of actinide complexes among the salts crystallized with the same charge-compensating cation and have been studied using vibrational spectroscopy including Raman and Fourier-transform infrared. Periodic trends in both the structural properties of these complexes and their vibrational spectra are presented and discussed, in particular the invariant nature of the O≡An≡O asymmetric stretching frequencies observed across the actinyl series. Electronic structure calculations were performed at a variety of levels of theory to aid in the interpretation of the vibrational data and to correlate trends in the data with the underlying electronic properties of these molecules.
Collapse
Affiliation(s)
- Matthieu Autillo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard E Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Meng Y, Cai B, Lan Q, Niu F, Zhang X, Yang Y. Synthesis and Structural Characterization of a Di-nuclear Uranyl Complex with Quinoline-6-carboxylate. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Harrowfield J, Atoini Y, Thuéry P. Plumbing the uncertainties of solvothermal synthesis involving uranyl ion carboxylate complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01663f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uranyl ion complexes with long-chain, saturated or unsaturated aliphatic dicarboxylate ligands illustrate how solvo-hydrothermal synthetic conditions sometimes result in the formation of species different from those hoped for.
Collapse
Affiliation(s)
- Jack Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Youssef Atoini
- Biogenic Functional Materials Group, Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Budantseva N, Andreev G, Sokolova M, Fedoseev A. Secondary Role of Aliphatic and Heterocyclic Amines in the Formation of Low-Temperature Amine-Bearing U, Np, and Pu(VI) Chromates. Inorg Chem 2021; 60:18395-18406. [PMID: 34793673 DOI: 10.1021/acs.inorgchem.1c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uranyl compounds with tetrahedral oxoanions demonstrate a significant structural and topological diversity. Complexes of transuranium elements with such anions are not equally well-represented in the literature. To answer the question about the structural similarity in a series of An6+ complexes with XO42- anions, we synthesized and studied 10 new U, Np, and Pu chromates with outer-sphere organic cations. The structural analysis and comparison with the literature data shows that the Np and Pu complexes are generally based on the same structural blocks as the uranyl compounds. Moreover, the chromate anion does not show any unique structural role as compared to the sulfate and selenate ions. As a result, the neptunium and plutonium chromates contain 1D and 2D structural units similar to those found in the uranyl sulfates and selenates. The templating role of the outer-sphere cations in the actinyl complexes with tetrahedral oxoanions is also not evident, and there is no clear correlation between the nature of the outer-sphere cations and the topology of the structural units.
Collapse
Affiliation(s)
- Nina Budantseva
- Institute of Physical Chemistry and Electrochemistry, 31 Leninsky pr., 119071, Moscow, Russia
| | - Grigory Andreev
- Institute of Physical Chemistry and Electrochemistry, 31 Leninsky pr., 119071, Moscow, Russia
| | - Marina Sokolova
- Institute of Physical Chemistry and Electrochemistry, 31 Leninsky pr., 119071, Moscow, Russia
| | - Aleksander Fedoseev
- Institute of Physical Chemistry and Electrochemistry, 31 Leninsky pr., 119071, Moscow, Russia
| |
Collapse
|
10
|
Brager DM, Nicholas AD, Schofield MH, Cahill CL. Pb-Oxo Interactions in Uranyl Hybrid Materials: A Combined Experimental and Computational Analysis of Bonding and Spectroscopic Properties. Inorg Chem 2021; 60:17186-17200. [PMID: 34727497 DOI: 10.1021/acs.inorgchem.1c02518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported are the syntheses and characterization of six new heterometallic UO22+/Pb2+ compounds. These materials feature rare instances of M-oxo interactions, which influence the bonding properties of the uranyl cation. The spectroscopic effects of these interactions were measured using luminescence and Raman spectroscopy. Computational density functional theory-based natural bonding orbital and quantum theory of atoms in molecules methods indicate interactions arise predominantly through charge transfer between cationic units via the electron-donating uranyl O spx lone pair orbitals and electron-accepting Pb2+ p orbitals. The interaction strength varies as a function of Pb-oxo interaction distance and angle with energy values ranging from 0.47 kcal/mol in the longer contacts to 21.94 kcal/mol in the shorter contacts. Uranyl units with stronger interactions at the oxo display an asymmetric bond weakening and a loss of covalent character in the U═O bonds interacting closely with the Pb2+ ion. Luminescence quenching is observed in cases in which strong Pb-oxo interactions are present and is accompanied by red-shifting of the uranyl symmetric Raman stretch. Changes to inner sphere uranyl bonding manifest as a weakening of the U═O bond as a result of interaction with the Pb2+ ion. Comprehensive evaluation of the effects of metal ions on uranyl spectra supports modeling efforts probing uranyl bonding and may inform applications such as forensic signatures.
Collapse
Affiliation(s)
- Dominique M Brager
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Mark H Schofield
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Christopher L Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States
| |
Collapse
|
11
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Mono- and binuclear Cu (II) 3,5-diiodosalicylates: Structures and features of non-covalent interactions in crystalline state. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Bondarenko MA, A Adonin S. CRYSTAL STRUCTURES OF MIXED-LIGAND BINUCLEAR Zn(II) 2-IODOBENZOATE COMPLEXES WITH 4-ETHYL- AND 3-CHLOROPYRIDINE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621080114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bondarenko MA, Novikov AS, Chernova KV, Sokolov MN, Adonin SA. 2-METHYLPYRIDINIUM SALT OF PENTAIODOBENZOIC ACID: ROLE OF THE HALOGEN BOND IN THE FORMATION OF A CRYSTAL PACKING. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621080096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Byrne NM, Schofield MH, Nicholas AD, Cahill CL. Bimetallic uranyl/cobalt(II) isothiocyanates: structure, property and spectroscopic analysis of homo- and heterometallic phases. Dalton Trans 2021; 50:9158-9172. [PMID: 34115090 DOI: 10.1039/d1dt01464a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of a family of UO22+/Co2+ isothiocyanate materials containing [UO2(NCS)5]3- and/or [Co(NCS)4]2- building units charged balanced by tetramethylammonium cations and assembled via SS or SOyl non-covalent interactions (NCIs), namely (C4H12N)3[UO2(NCS)5], (C4H12N)2[Co(NCS)4], and (C4H12N)5[Co(NCS)4][UO2(NCS)5]. The homometallic uranyl phase preferentially assembles via SS interactions, whereas in the heterometallic phase SOyl interactions are predominant. The variation in assembly mode is explored using electrostatic surfaces potentials, revealing that the pendant -NCS ligands of the [Co(NCS)4]2- anion is capable of outcompeting those of the [UO2(NCS)5]3- anion. Notably, the heterometallic phase displays atypical blue shifting of the uranyl symmetric stretch in the Raman spectra, which is in contrast to many other compounds featuring non-covalent interactions at uranyl oxygen atoms. A combined experimental and computational (density functional theory and natural bond orbital analyses) approach revealed that coupling of the uranyl symmetric stretch with isothiocyanate modes of equatorial -NCS ligands was responsible for the atypical blue shift in the heterometallic phase.
Collapse
Affiliation(s)
- Nicole M Byrne
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C. 20052, USA.
| | - Mark H Schofield
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C. 20052, USA.
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C. 20052, USA.
| | - Christopher L Cahill
- Department of Chemistry, The George Washington University, 800 22nd St NW, Suite 4000, Washington, D.C. 20052, USA.
| |
Collapse
|
16
|
Bondarenko MA, Novikov AS, Adonin SA. Mononuclear Zn(II) 3,5-Diiodosalicylate Complex with 3-Chloropyridine: Synthesis and Features of Non-Covalent Interactions in the Solid State. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Carter KP, Kalaj M, McNeil S, Kerridge A, Schofield MH, Ridenour JA, Cahill CL. Structural, spectroscopic, and computational evaluations of cation–cation and halogen bonding interactions in heterometallic uranyl hybrid materials. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01319f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A route for systematically accessing the oxo atoms of the linear uranyl (UO22+) cation via cation–cation and halogen bonding interactions is detailed, and interaction strengths are probed via structural, vibrational, and computational means.
Collapse
Affiliation(s)
- Korey P. Carter
- Department of Chemistry
- The George Washington University
- Washington
- USA
- Chemical Sciences Division
| | - Mark Kalaj
- Department of Chemistry
- The George Washington University
- Washington
- USA
- Department of Chemistry and Biochemistry
| | - Sapphire McNeil
- Department of Chemistry
- Lancaster University
- Bailrigg
- Lancaster LA1 4YB
- UK
| | - Andrew Kerridge
- Department of Chemistry
- Lancaster University
- Bailrigg
- Lancaster LA1 4YB
- UK
| | - Mark H. Schofield
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | | | | |
Collapse
|
18
|
Abstract
Consideration of the extensive family of known uranyl ion complexes of polycarboxylate ligands shows that there are quite numerous examples of crystalline solids containing capsular, closed oligomeric species with the potential for use as selective heterogeneous photo-oxidation catalysts. None of them have yet been assessed for this purpose, and some have obvious deficiencies, although related framework species have been shown to have the necessary luminescence, porosity and, to some degree, selectivity. Aspects of ligand design and complex composition necessary for the synthesis of uranyl ion cages with appropriate luminescence and chemical properties for use in selective photo-oxidation catalysis have been analysed in relation to the characteristics of known capsules.
Collapse
|
19
|
Andreev G, Budantseva N, Levtsova A. Variability of structural motifs in the crystal structure of U( vi) complexes with p-methoxybenzoic acid. CrystEngComm 2020. [DOI: 10.1039/d0ce00681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unexpected crystal structure based on the simultaneous presence of 0D and 1D uranyl-containing building units was obtained.
Collapse
Affiliation(s)
- Grigory Andreev
- Institute of Physical Chemistry and Electrochemistry
- Moscow
- Russia
| | - Nina Budantseva
- Institute of Physical Chemistry and Electrochemistry
- Moscow
- Russia
| | | |
Collapse
|
20
|
Serezhkin VN, Grigoriev MS, Savchenkov AV, Budantseva NA, Fedoseev AM, Serezhkina LB. Peculiarities of the Supramolecular Assembly of Tetraethylammonium and 3-Bromopropionate Ions in Uranyl, Neptunyl, and Plutonyl Coordination Compounds. Inorg Chem 2019; 58:14577-14585. [PMID: 31622086 DOI: 10.1021/acs.inorgchem.9b02235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthesis and X-ray diffraction studies of {N(C2H5)4}[AnO2(C2H4BrCOO)3] [An = U (I), Np (II), or Pu (III)] and C2H4BrCOOH (IV), where C2H4BrCOO- is an anion of the 3-bromopropionic acid, are reported. The isostructural coordination compounds I-III contain mononuclear anionic complexes [AnO2(C2H4BrCOO)3]- belonging to the crystal chemical group AB013 (A = AnO22+; B01 = C2H4BrCOO-). In the crystal structure of IV, the C2H4BrCOOH molecules are hydrogen bonded into centrosymmetric dimers R22(8). Using the method of molecular Voronoi-Dirichlet (VD) polyhedra, the features of intermolecular interactions in crystals of I-IV are discussed in support of the results of IR and UV spectroscopy experiments. Actinide contraction in I-III manifests itself in a regular reduction of the average length of the axial and equatorial bonds in hexagonal bipyramids AnO8, in an increase in νas(AnO22+) wavenumbers, and in a simultaneous decrease in the volume and sphericity degree of VD polyhedra of An atoms in the U-Np-Pu series. The title compounds represent an interesting architecture, where 3-bromopropionate ions penetrate through the square 44 net of tetraethylammonium ions and thus bind adjacent nets via the "locking effect".
Collapse
Affiliation(s)
- Viktor N Serezhkin
- Samara National Research University , Moskovskoye Highway 34 , Oblast, Samara 443086 , Russia
| | - Mikhail S Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow 119071 , Russia
| | - Anton V Savchenkov
- Samara National Research University , Moskovskoye Highway 34 , Oblast, Samara 443086 , Russia
| | - Nina A Budantseva
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow 119071 , Russia
| | - Aleksandr M Fedoseev
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow 119071 , Russia
| | - Larisa B Serezhkina
- Samara National Research University , Moskovskoye Highway 34 , Oblast, Samara 443086 , Russia
| |
Collapse
|
21
|
Gui D, Duan W, Shu J, Zhai F, Wang N, Wang X, Xie J, Li H, Chen L, Diwu J, Chai Z, Wang S. Persistent Superprotonic Conductivity in the Order of 10−1 S·cm−1 Achieved Through Thermally Induced Structural Transformation of a Uranyl Coordination Polymer. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20190004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite tremendous efforts having been made in the exploration of new high-performance proton-conducting materials, systems with superprotonic conductivity higher than 10−1 S·cm−1 are scarcely reported. We show here the utilization of bridging uranyl oxo atoms, traditionally termed cation–cation interaction (CCI), as the hydrogen bond acceptor to build a dense and ordered hydrogen bond network, affording a unique uranyl-based proton-conducting coordination polymer (H3O)4UO2(PO4)2 (HUP-1). This compound contains a densely connected hydronium network that is substantially stabilized by uranyl oxo atoms and exhibits high proton conductivities over a wide temperature range. At 98 °C, 98% relative humidity, a superprotonic conductivity of 1.02 × 10−1 S·cm−1 is observed for the system, one of the highest values reported for a solid-state proton-conducting material. This property originates from the thermally induced phase transformation from HUP-1 to another uranyl compound also with a CCI bond, (H3O)UO2PO4·(H2O)3 (HUP-2), accompanied by the partial generation of phosphorus acid that is further trapped in the structure of HUP-2, demonstrated by solid-state NMR analysis. The superprotonic conductivity of H3PO4@HUP-2 is persistent under the testing condition.
Collapse
|
22
|
Kalaj M, Momeni MR, Bentz KC, Barcus KS, Palomba JM, Paesani F, Cohen SM. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chem Commun (Camb) 2019; 55:3481-3484. [PMID: 30829360 DOI: 10.1039/c9cc00642g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of halogenated UiO-66 derivatives was synthesized and analyzed for the breakdown of the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) to analyze ligand effects. UiO-66-I degrades DMNP at a rate four times faster than the most active previously reported MOFs. MOF defects were quantified and ruled out as a cause for increased activity. Theoretical calculations suggest the enhanced activity of UiO-66-I originates from halogen bonding of the iodine atom to the phosphoester linkage allowing for more rapid hydrolysis of the P-O bond.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92023-0358, USA.
| | | | | | | | | | | | | |
Collapse
|