1
|
Li X, Chai S, Li H. Polyoxometalate-based reticular materials for proton conduction: from rigid frameworks to flexible networks. Dalton Trans 2024; 53:6488-6495. [PMID: 38567513 DOI: 10.1039/d4dt00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proton conductors play a crucial role in energy and electronic technologies, thus attracting extensive research interest. Recently, reticular chemistry has propelled the development of reticular materials with framework or network structures, which can offer tunable proton transport pathways to achieve optimal conducting performance. Polyoxometalates (POMs), as a class of highly proton-conducting units, have been integrated into these reticular materials using various linkers. This leads to the creation of hybrid proton conductors with structures varying from rigid crystalline frameworks to flexible networks, showing adjustable proton transport behaviors and mechanical properties. This Frontier article highlights the advancements in POM-based reticular materials for proton conduction and provides insights for designing advanced proton conductors for practical applications.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
2
|
Lun HJ, Zhang ZM, Sun YH, Wang MM, Cai JJ, Liang XY, Li YM, Bai Y. N-N-Bridged Polynuclear POM-Based Coordination Polymers Based on a V-Type Ligand: Proton Conduction and Magnetism. Inorg Chem 2023; 62:17093-17101. [PMID: 37800965 DOI: 10.1021/acs.inorgchem.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The construction of polyoxometalate (POM)-based coordination polymers, in the presence of a nitrogen heterocyclic ligand, is intriguing due to the potential for obtaining diverse structures. These structures exhibit extensive application possibilities in the fields of proton conductivity and magnetism. Herein, four new POM-based polynuclear coordination polymers with the formulas of {[Fe2(btb)3(H2O)2(SiW12O40)]·3H2O}n (1), {[Cd2(btb)2(H2O)6(HPMoVI10MoV2O40)]·2H2O}n (2), {[Co3(OH)2(btb)2(H2O)5(HPMoVI10MoV2O40)]·7H2O}n (3), and {[Cu3(OH)(btb)2(H2O)(HP2Mo5O23)]·6H2O}n (4) have been prepared using the V-type 1,3-bis(4H-1,2,4-triazole-4-yl)benzene (btb) ligand. Compounds 1 and 2 feature similar two-dimensional (2D) structures, derived from the binuclear Fe2N6 and Cd2N4 subunits connected by tridentate btb ligands. Meanwhile, in compound 3, hexanuclear Co6(OH)4 units are bound by quadridentate btb ligands forming a 2D layer with the same 4-c sql topology simplification as compounds 1 and 2. In compound 1, Keggin-type polyoxoanions are monodentate-coordinated to metal ions and suspended on the 2D structure, while, in compounds 2 and 3, they act as discrete counterions residing in the interstitial spaces between two adjacent layers, thereby extending the 2D structures into 3D structures through hydrogen bonding interactions. In compound 4, trinuclear Cu3(OH) subunits are further constructed into a 3D framework through cooperation with four tridentate and quadridentate btb ligands as well as Strandberg-type anions. Furthermore, the proton conduction of the four compounds has been investigated. They display high proton conductivities at 358 K and 98% RH with powdered samples, which are 1.26 × 10-3, 1.24 × 10-3, 3.24 × 10-4, and 2.57 × 10-4 S cm-1, respectively. Interestingly, by mixing with Nafion, the composite membranes of compounds 2 and 4 exhibit enhanced proton conductivities, measuring at 4.87 × 10-2 and 1.28 × 10-2 S cm-1, respectively, at 358 K and 98% RH, which suggests excellent potential for applications. In addition, compounds 1, 3, and 4 display antiferromagnetic behaviors due to similar magnetic interactions. This work can provide research insights into the assembly of 2D POM-based coordination polymers with nitrogen heterocyclic ligands and Keggin-type POMs and further promote their research progress in proton conduction.
Collapse
Affiliation(s)
- Hui-Jie Lun
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhi-Min Zhang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya-Hao Sun
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Meng-Meng Wang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jun-Jie Cai
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xin-Yu Liang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
3
|
Tang D, Xiong Z, Lu P, Wang S, Chen X, Lou X, Zheng M, Chen S, Ye C, Chen J, Qiu T. Lacunary polyoxometalate @ ZIF for ultradeep Pb(II) adsorption. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Three Keggin POMs-based coordination polymers constructed by linear N-heterocyclic ligand for proton conduction, photocatalytic activity and magnetic property. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Zheng Y, Shen Q, Li Z, Jing X, Duan C. Two Copper-Containing Polyoxometalate-Based Metal-Organic Complexes as Heterogeneous Catalysts for the C-H Bond Oxidation of Benzylic Compounds and Olefin Epoxidation. Inorg Chem 2022; 61:11156-11164. [PMID: 35799381 DOI: 10.1021/acs.inorgchem.2c01073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a one-pot assembly method, two novel copper-containing Keggin-type polyoxometalates (POMs)-based metal-organic complexes, that is, [CuII2(pbba)2NO3-(H2O)2(PW12O40)]·3H2O [PW12-Cu-pbba, H2pbba = 1,1'-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)] and [CuII2(pbba)2(H2O)2(GeW12O40)]·3H2O (GeW12-Cu-pbba), were successfully synthesized. These two complexes are isostructural, differing only in their POM components. They are applicable as heterogeneous catalysts for the C-H bond oxidation of benzylic compounds and olefin epoxidation under mild conditions, with oxygen as the oxidant and isobutyraldehyde as the coreductant. The catalytic activity of PW12-Cu-pbba was superior to that of GeW12-Cu-pbba. Under the optimal conditions, PW12-Cu-pbba catalyzed the oxidation of indane into 1-indanone with an 81% yield and >99% selectivity within 48 h. As heterogeneous catalysts, both complexes demonstrated excellent recoverability and high stability and could be stably reused five times without significant activity loss.
Collapse
Affiliation(s)
- Yiying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingbo Shen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhentao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
6
|
Hong BQ, Qi YJ, Lai RD, Ge R, Zheng ST, Li XX. Two luminescent metal-organic frameworks with temperature-dependent emission. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Cui ZW, Lu JJ, Lin HY, Luan J, Chang ZH, Li XH, Wang XL. Four Keggin-type polyoxometalate-based complexes derived from bis(pyrazine)–bis(amide) ligands for electrochemical sensing of multiple analytes and adsorbing dye molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01403j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new Keggin-based complexes derived from bis(pyrazine)–bis(amide) ligands are used to detect multiple analytes (BrO3− NO2−, Cr(vi) and Fe(iii) ions) and adsorb organic dye molecules from aqueous solution.
Collapse
Affiliation(s)
- Zi-Wei Cui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jun-Jun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jian Luan
- College of Science, Northeastern University, Shenyang 100819, PR China
| | - Zhi-Han Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiao-Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
8
|
Chen LL, Shi YJ, Wu WW, Wang JX, Li YM, Bai Y, Dang DB. Three new POM-based coordination polymers with 1,3,5-tris(1-imidazolyl)benzene ligand: syntheses, structures and proton conductivity. CrystEngComm 2022. [DOI: 10.1039/d2ce00061j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three POM-based coordination polymers with 1,3,5-tris(1-imidazolyl)benzene have been synthesized. 1 exhibits a rare 3,6-connected pyr topology; 2 and 3 reveal 3D hydrogen-bonded structures with good proton conductivity.
Collapse
Affiliation(s)
- Lin-Lin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Jie Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Wen-Wen Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Xin Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Li D, Tan XL, Chen LL, Liu XY, Li YM, Dang DB, Bai Y. Four Dawson POM-based inorganic-organic supramolecular compounds for proton conduction, electrochemical and photocatalytic activity. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Shi YJ, Chen LL, Liu Y, Wu YY, Li YM, Dang DB, Bai Y. Isopolymolybdate-Based Cobalt/Nickel Coordination Polymers Constructed by V-Type N-Donor Ligands. Inorg Chem 2021; 60:1264-1273. [PMID: 33400532 DOI: 10.1021/acs.inorgchem.0c03433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four novel isopolymolybdate-based coordination polymers (CPs), constructed from 2,6-bis(1,2,4-triazol-1-yl)pyridine (btp), 1,3-bis(4H-1,2,4-triazol-4-yl)benzene (btb), and 3,5-bis(1-imidazolium)pyridine (bip), have been synthesized under a hydrothermal method: {[Co(btp)(H2O)2(β-Mo8O26)0.5]·3H2O}n (1), [Ni(btp)(H4Mo6O22)0.5]n (2), [Co(btb)(H2O)(β-Mo8O26)0.5]n (3), and {[Co(Hbip)2(H2O)2(γ-Mo8O26)]·6H2O}n (4). Complex 1 exhibits one 3D framework with an unexpected 3-nodal 2,4,6-c net topology containing the 1D {β-Mo8O26}n chains, 6-connected CoII centers, and V-type coordinated btp ligands. The neighboring [Mo6O22]4- anions of complex 2 are bridged by the NiII centers to build one 2D {Ni2(Mo6O22)} network, which is arranged into the 3D framework through the weak π···π stacking interactions. In compound 3, one 3D framework is formed by the adjacent 1D {Co2(btp)2}n chains connected by {β-Mo8O26}n units, which demonstrates a rare 4,6-c fsc topology. In complex 4, one 2D {Co(Hbip)2(γ-Mo8O26)} layer with a (4, 4) network is connected to one 3D hydrogen-bonding framework via N-H···O and O-H···O hydrogen bonds. Magnetic data indicate that complexes 1 and 4 exhibit antiferromagnetic behaviors, whereas complexes 2 and 3 reveal spin-canting magnetic behavior and metamagnetic behavior, respectively. In addition, the proton conductivity of complexes 3 and 4 was investigated, showing that compound 4 has good proton conductivity at 85 °C and a relative humidity of 98% RH.
Collapse
Affiliation(s)
- Ya-Jie Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lin-Lin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ying Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ying-Ying Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
11
|
Ying J, Jin L, Yu HY, Tian AX, Wang XL. A series of polyoxometalate-based hybrid complexes constructed by a tripodal ligand containing mixed N/O donors. CrystEngComm 2021. [DOI: 10.1039/d1ce01195b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We designed two synthetic strategies using identical ligands to construct six POM-based complexes. These complexes can act as amperometric sensors for the detection of Cr(vi), Fe(iii) and H2O2 and fluorescence sensors for sensing Cr3+.
Collapse
Affiliation(s)
- Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hai-Yan Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ai-Xiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
12
|
Two high tunable proton-conducting cobalt(II) complexes derived from imidazole multi-carboxylate-based ligand. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Ji NN, Shi ZQ, Xie XX, Li G. Polyoxometalate-based hydrogen-bonded organic frameworks as a new class of proton conducting materials. CrystEngComm 2020. [DOI: 10.1039/d0ce01578d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop new types of crystalline proton conducting materials for fuel cells, a polyoxometalate-based hydrogen-bonded organic framework (PHOF) based on Keggin-type [PMo12O40]3− and phenylimidazole (PHOF 1) has been prepared.
Collapse
Affiliation(s)
- Ning-Ning Ji
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an 271021
- P. R. China
| | - Zhi-Qiang Shi
- College of Chemistry and Chemical Engineering
- Taishan University
- Tai'an 271021
- P. R. China
| | - Xiao-Xin Xie
- College of Chemistry and Green Catalysis Centre
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|