1
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
2
|
Trivedi R, Upadhyay TK, Khan F, Pandey P, Kaushal RS, Sonkar M, Kumar D, Saeed M, Khandaker MU, Emran TB, Siddique MAB. Innovative strategies to manage polluted aquatic ecosystem and agri-food waste for circular economy. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 21:100928. [DOI: 10.1016/j.enmm.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Mandal J, Dey A, Sarkar S, Khatun M, Ghorai P, Ray PP, Mahata P, Saha A. Chromone-Based Cd(II) Fluorescent Coordination Polymer Fabricated to Study Optoelectronic and Explosive Sensing Properties. Inorg Chem 2024; 63:4527-4544. [PMID: 38408204 DOI: 10.1021/acs.inorgchem.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Here, electrical conductivity and explosive sensing properties of multifunctional chromone-Cd(II)-based coordination polymers (CPs) (1-4) have been explored. The presence of different pseudohalide linkers, thiocyanate ions, and dicyanamide ions resulted in 1D and 3D architecture in the CPs. Thin film devices developed from CPs 1-4 (complex-based Schottky devices, CSD1, CSD2, CSD3, and CSD4, respectively) showed semiconductor behavior. Their conductivity values increased under photo illumination (1.37 × 10-5, 1.85 × 10-5, 1.61 × 10-5, and 2.01 × 10-5 S m-1 under dark conditions and 5.06 × 10-5, 8.78 × 10-5, 7.26 × 10-5, and 10.21 × 10-5 S m-1 under light). The nature of the I-V plots of these thin film devices under light irradiation and dark are nonlinear rectifying, which has been observed in Schottky barrier diodes (SBDs). All four CPs (1-4) exhibited highly selective fluorescence quenching-based sensing properties toward well-known explosives, 2,4-dinitrophenol (DNP) and 2,4,6-trinitrophenol (TNP). The limit of detection (LOD) values are 55, 28, 27, and 31 μM for TNP and 78, 44, 32, and 41 μM for DNP for complexes 1-4, respectively. A structure property correlation has been established to explain optoelectronic and explosive sensing properties.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec. III, Salt Lake, Kolkata 700106, India
| | - Sourav Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Mohafuza Khatun
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India
| | | | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Harvey-Reid NC, Sensharma D, Mukherjee S, Patil KM, Kumar N, Nikkhah SJ, Vandichel M, Zaworotko MJ, Kruger PE. Crystal Engineering of a New Hexafluorogermanate Pillared Hybrid Ultramicroporous Material Delivers Enhanced Acetylene Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4803-4810. [PMID: 38258417 DOI: 10.1021/acsami.3c16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.
Collapse
Affiliation(s)
- Nathan C Harvey-Reid
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Komal M Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Naveen Kumar
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
5
|
Alatrista G, Pratt C, El Hanandeh A. Phosphate adsorption by metal organic frameworks: Insights from a systematic review, meta-analysis, and predictive modelling with artificial neural networks. CHEMOSPHERE 2023; 339:139674. [PMID: 37517668 DOI: 10.1016/j.chemosphere.2023.139674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
This comprehensive study analysed 55 articles published between 2011 and 2022 on the use of metal organic frameworks (MOFs) for phosphate adsorption. The study found that the performance of MOFs in phosphate adsorption is influenced by various factors such as the type of MOF, synthesis method, modification/alteration, and operational conditions (initial concentration, adsorbent dose, pH, contact time, and temperature). Most of the MOFs have a wide range of theoretical maximum adsorption capacity for phosphate, but their long-term use in phosphorus recovery may be limited due to the adsorption mechanisms being dominated by inner sphere complexation. The study employed machine learning to construct artificial neural network (ANN) models for predicting phosphate adsorption capacity based on input features from operation and synthesis procedures. The initial phosphate concentration was the most important input from the operational features, while the modulator agent was consistently relevant during MOF synthesis. The models showed strong fitting for most MOF types recorded for the study, such as UIO-66, MIL-100, ZIF-8, Al-MOFs, La-MOFs, and Ce-MOFs. Overall, this study provides valuable insights for the design of MOF adsorbents for phosphate adsorption and offers guidance for future research in this area.
Collapse
Affiliation(s)
- G Alatrista
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia.
| | - C Pratt
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - A El Hanandeh
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
6
|
|
7
|
Fluorescence sensor based on highly stable Cd(Zn)-coordination polymers for efficient detection of Cr2O72-/Nitrobenzene and recognition mechanism. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Rani P, Husain A, Bhasin KK, Kumar G. Metal-Organic Framework-Based Selective Molecular Recognition of Organic Amines and Fixation of CO 2 into Cyclic Carbonates. Inorg Chem 2022; 61:6977-6994. [PMID: 35481354 DOI: 10.1021/acs.inorgchem.2c00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and structural depiction of two new metal-organic frameworks (MOFs), namely, [{Zn(L)(oba)}·4H2O]α (Zn-MOF-1) and [{Cd1/2(L)1/2(nipa)1/2(H2O)1/2}·(DMF)1/2(H2O)]α (Cd-MOF-2) (where L = N2,N6-di(pyridin-4-yl)naphthalene-2,6-dicarboxamide, 4,4'-H2oba = 4,4'-oxybisbenzoic acid, and 5-H2nipa = 5-nitroisophthalic acid) are reported. Both Zn-MOF-1 and Cd-MOF-2 have been prepared by reacting ligand L and coligand 4,4'-H2oba or 5-H2nipa with the respective dihydrates of Zn(OAc)2 and Cd(OAc)2 (OAc = acetate). Crystal structure X-ray analysis discloses that Zn-MOF-1 displays an overall 2D → 3D interpenetrated framework structure. The topological analysis by ToposPro suggests a (4)-connected uninodal sql topology with a point symbol of {44·62} having 2D + 2D parallel polycatenation. However, crystal packing of Cd-MOF-2 adapted a porous framework architecture and was topologically simplified as (3,4)-connected binodal 2D net. In addition, both Zn-MOF-1 and Cd-MOF-2 were proved to be multifunctional materials for the recognition of organic amines and in the fixation of CO2 to cyclic carbonates. Remarkably, Zn-MOF-1 and Cd-MOF-2 showed very good fluorescence stability in aqueous media and have shown 98 and 97% quenching efficiencies, respectively, for 4-aminobenzoic acid (4-ABA), among all of the researched amines. The mechanistic study of organic amines recognition proposed that fluorescence quenching happened mainly through hydrogen-bonding and π-π stacking interactions. Additionally, cycloaddition of CO2 to epoxide in the presence of Zn-MOF-1 and Cd-MOF-2 afforded up to 96% of cyclic carbonate within 24 h. Both Zn-MOF-1 and Cd-MOF-2 exhibited recyclability for up to five cycles without noticing an appreciable loss in their sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar, Punjab 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
9
|
Shahsavari M, Mohammadzadeh Jahani P, Sheikhshoaie I, Tajik S, Aghaei Afshar A, Askari MB, Salarizadeh P, Di Bartolomeo A, Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:447. [PMID: 35057165 PMCID: PMC8779251 DOI: 10.3390/ma15020447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Metal organic frameworks (MOF) are a class of hybrid networks of supramolecular solid materials comprising a large number of inorganic and organic linkers, all bound to metal ions in a well-organized fashion. Zeolitic imidazolate frameworks (ZIFs) are a sub-group of MOFs with imidazole as an organic linker to metals; it is rich in carbon, nitrogen, and transition metals. ZIFs combine the classical zeolite characteristics of thermal and chemical stability with pore-size tunability and the rich topological diversity of MOFs. Due to the energy crisis and the existence of organic solvents that lead to environmental hazards, considerable research efforts have been devoted to devising clean and sustainable synthesis routes for ZIFs to reduce the environmental impact of their preparation. Green chemistry is the key to sustainable development, as it will lead to new solutions to existing problems. Moreover, it will present opportunities for new processes and products and, at its heart, is scientific and technological innovation. The green chemistry approach seeks to redesign the materials that make up the basis of our society and our economy, including the materials that generate, store, and transport our energy, in ways that are benign for humans and the environment and that possess intrinsic sustainability. This study covers the principles of green chemistry as used in designing strategies for synthesizing greener, less toxic ZIFs the consume less energy to produce. First, the necessity of green methods in today's society, their replacement of the usual non-green methods and their benefits are discussed; then, various methods for the green synthesis of ZIF compounds, such as hydrothermally, ionothermally, and by the electrospray technique, are considered. These methods use the least harmful and toxic substances, especially concerning organic solvents, and are also more economical. When a compound is synthesized by a green method, a question arises as to whether these compounds can replace the same compounds as synthesized by non-green methods. For example, is the thermal stability of these compounds (which is one of the most important features of ZIFs) preserved? Therefore, after studying the methods of identifying these compounds, in the last part, there is an in-depth discussion on the various applications of these green-synthesized compounds.
Collapse
Affiliation(s)
- Mahboobeh Shahsavari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht 4199613776, Iran;
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and “Interdepartmental Center NANOMATES”, University of Salerno, 84084 Fisciano, SA, Italy
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
10
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
11
|
Green synthesis and properties of nickel terephthalate complex with 2,2'-bipyridine. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ashourdan M, Semnani A, Hasanpour F, Moosavifard SE. Synthesis of nickel cobalt manganese metal organic framework@high quality graphene composites as novel electrode materials for high performance supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Yu S, Zhang KY, Li JX, Xiao Y, Sun LX, Bai FY, Xing YH. Three Pb x(COO) y Cluster Frameworks Based on a Flexible Triazinetricarboxylic Acid Ligand: Syntheses, Structures, and Fluorescent Sensing Application for Nitrophenols. Inorg Chem 2021; 60:7887-7899. [PMID: 34024091 DOI: 10.1021/acs.inorgchem.1c00408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three new metal-organic frameworks (MOFs), namely, [Pb7(TTPCA)4Cl2]·3H2O (1), [Pb7(TTPCA)4(DMA)2(HCOO)2]·H2O (2), and [Pb4(TTPCA)3]·3DMF·2H2O·H3O (3), were synthesized by the H3TTPCA ligand [H3TTPCA = 1,1',1″-(1,3,5-triazine-2,4,6-triyl)-tripiperidine-4-carboxylic acid], with lead(II) nitrate under solvothermal conditions. They were characterized by CHN analysis, IR spectroscopy, UV-vis spectroscopy, and single-crystal and powder X-ray diffraction. In addition, their thermogravimetric analysis and fluorescence properties were studied. Compounds 1-3 were 3D MOF structures with different Pbx(COO)y clusters: ([Pb7(COO)12Cl2]), ([Pb7(COO)12]), and [Pb8(COO)18]. Fluorescence detection of compounds 1-3 shows that they can act as excellent sensors of nitrophenols with a low limit of detection and a high quenching constant.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Kai Yue Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jin Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
14
|
Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Liu R, Jiang Y, Gong Y, Fu Y, Shen J, Wang L, Fan Y, Guo Y, Xu J. Two scandium-based coordination polymers: rapid ultrasound-assisted synthesis, crystal transformation, and catalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assisted by ultrasound waves, a Sc-based coordination polymer CP 1 was synthesized successfully. With 1 as the precursor, another stable CP 2 can be obtained by single-crystal to single-crystal transformation and 2 exhibited good catalytic activities.
Collapse
Affiliation(s)
- Rui Liu
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Yansong Jiang
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong Province, P. R. China
| | - Yiran Gong
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Yu Fu
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Jieyu Shen
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Yupeng Guo
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun, 130012 Jilin Province, P. R. China
| |
Collapse
|
16
|
Chen Z, Wasson MC, Drout RJ, Robison L, Idrees KB, Knapp JG, Son FA, Zhang X, Hierse W, Kühn C, Marx S, Hernandez B, Farha OK. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss 2021; 225:9-69. [DOI: 10.1039/d0fd00103a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We provide a brief overview of the state of the MOF field from their inception to their synthesis, potential applications, and finally, to their commercialization.
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Lee Robison
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Julia G. Knapp
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | | | | | | | | | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
- Department of Chemical & Biological Engineering
| |
Collapse
|
17
|
Sefidabi F, Abbasi A, Mortazavi S, Masteri‐Farahani M. A new 2D cadmium coordination polymer based on hydroxyl‐substituted benzenedicarboxylic acid as an effective heterogeneous catalyst for Knoevenagel condensation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Farzaneh Sefidabi
- School of Chemistry College of Science, University of Tehran P.O. Box Tehran 14155‐6455 Iran
| | - Alireza Abbasi
- School of Chemistry College of Science, University of Tehran P.O. Box Tehran 14155‐6455 Iran
| | - Saeideh‐Sadat Mortazavi
- School of Chemistry College of Science, University of Tehran P.O. Box Tehran 14155‐6455 Iran
| | | |
Collapse
|
18
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Ojha M, Wu B, Deepa M. NiCo Metal-Organic Framework and Porous Carbon Interlayer-Based Supercapacitors Integrated with a Solar Cell for a Stand-Alone Power Supply System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42749-42762. [PMID: 32840351 DOI: 10.1021/acsami.0c10883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nickel cobalt-metal-organic framework (NiCo-MOF), with a semihollow spherical morphology composed of rhombic dodecahedron nanostructures, was synthesized using a scalable and facile wet chemical route. Such a structure endowed the material with open pores, which enabled rapid ion ingress and egress, and the high effective surface area of the MOF allowed the uptake and release of a large number of electrolyte ions during charge-discharge. By combining this NiCo-MOF cathode with a highly porous carbon (PC) anode (derived from the naturally grown and abundantly available bio-waste, namely, palm kernel shells), the resulting PC//NiCo-MOF supercapacitor using an aqueous potassium hydroxide (KOH) electrolyte delivered a capacitance of 134 F g-1, energy and power densities of 24 Wh kg-1 and 0.8 kW kg-1 at 1 A g-1, respectively, over an operational voltage window of 1.6 V. By employing thin interlayers of PC coated over a Whatman filter paper (PC@FP), the modified supercapacitor configuration of PC/PC@FP//PC@FP/NiCo-MOF delivered greatly enhanced performance. This cell delivered a capacitance of 520 F g-1 and an energy density of 92 Wh kg-1, improved by nearly 4-fold, compared to the analogous supercapacitor without the interlayers (at the same power and current densities and voltage window), thus evidencing the role of the cost-effective, electrically conducting porous carbon interlayers in amplifying the supercapacitor's energy storage capabilities. Further, illumination of white light-emitting diodes (LEDs) using a three-series configuration and the photocharging of this supercapacitor with a solution-processed solar cell are also demonstrated. The latter confirms its ability to function as a stand-alone power supply system for electronic/computing devices, which can even operate under medium lighting conditions.
Collapse
Affiliation(s)
- Manoranjan Ojha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Billy Wu
- Dyson School of Design Engineering, Imperial College, London SW7 2AZ, U.K
| | - Melepurath Deepa
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
20
|
Wuest JD. Atoms and the void: modular construction of ordered porous solids. Nat Commun 2020; 11:4652. [PMID: 32938928 PMCID: PMC7495421 DOI: 10.1038/s41467-020-18419-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
For millennia, humans have exploited the special properties of porous materials. Advances in recent years have yielded a new generation of finely structured porous materials that allow processes to be controlled at the molecular level. These materials are built by a strategy of modular construction, using molecular components designed to position their neighbors in ways that create predictable voids.
Collapse
Affiliation(s)
- James D Wuest
- Département de Chimie, Université de Montréal, Montréal, QC, H2V 0B3, Canada.
| |
Collapse
|
21
|
Manganese-organic framework assembled by 5-((4′-(tetrazol-5″-yl)benzyl)oxy)isophthalic acid: A solvent-free catalyst for the formation of carbon–carbon bond. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Fang R, Dhakshinamoorthy A, Li Y, Garcia H. Metal organic frameworks for biomass conversion. Chem Soc Rev 2020; 49:3638-3687. [DOI: 10.1039/d0cs00070a] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review narrates the recent developments on the catalytic applications of pristine metal–organic frameworks (MOFs), functionalized MOFs, guests embedded over MOFs and MOFs derived carbon composites for biomass conversion into platform chemicals.
Collapse
Affiliation(s)
- Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | | | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hermenegildo Garcia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV)
- Universitat Politècnica de València
- 46022 Valencia
- Spain
- Centre of Excellence for Advanced Materials Research
| |
Collapse
|
23
|
Duan C, Yu Y, Yang P, Zhang X, Li F, Li L, Xi H. Engineering New Defects in MIL-100(Fe) via a Mixed-Ligand Approach To Effect Enhanced Volatile Organic Compound Adsorption Capacity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05751] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chongxiong Duan
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528231, P. R. China
| | - Yi Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, P. R. China
| | - Xuelian Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Feier Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
24
|
Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal Bioanal Chem 2019; 412:37-54. [DOI: 10.1007/s00216-019-02217-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
25
|
Simões AB, Figueira F, Mendes RF, Barbosa JS, Rocha J, Paz FAA. One-dimensional ladder gallium coordination polymer. Acta Crystallogr E Crystallogr Commun 2019; 75:1607-1612. [PMID: 31709077 PMCID: PMC6829714 DOI: 10.1107/s2056989019013446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022]
Abstract
A one-dimensional ladder-type coordination polymer, poly[[(μ2-hydroxido)(μ2-1H-pyrazole-3,5-di-carboxyl-ato)gallium(III)] monohydrate], [Ga(C5H2N2O4)(OH)(H2O)] n or [Ga(HPDC)(OH)(H2O)] n , I, isotypic with a V3+ coordination polymer previously reported by Chen et al. [J. Coord. Chem. (2008). 61, 3556-3567] was prepared from Ga3+ and pyrazole-3,5-di-carb-oxy-lic acid monohydrate (H3PDC·H2O). Compound I was isolated using three distinct experimental methods: hydro-thermal (HT), microwave-assisted (MWAS) and one-pot (OP) and the crystallite size should be fine-tuned according to the method employed. The coordination polymeric structure is based on a dimeric Ga3+ moiety comprising two μ2-bridging hydroxide groups, which are inter-connected by HPDC2- anionic organic linkers. The close packing of individual polymers is strongly directed by the supra-molecular inter-actions, namely several O-H⋯O and N-H⋯O hydrogen-bonding inter-actions.
Collapse
Affiliation(s)
- Andrea B. Simões
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Flávio Figueira
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jéssica S. Barbosa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- QOPNA & LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Rocha
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
|
27
|
Drout RJ, Robison L, Chen Z, Islamoglu T, Farha OK. Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Li K, Yang J, Gu J. Salting-in species induced self-assembly of stable MOFs. Chem Sci 2019; 10:5743-5748. [PMID: 31293760 PMCID: PMC6568048 DOI: 10.1039/c9sc01447k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
A general strategy based on the Hoffmeister effect is proposed for the aqueous-phase and mild synthesis of stable metal–organic frameworks.
Metal–organic frameworks (MOFs) are attracting immense research interest despite the fact that their synthesis usually proceeds in organic media or under harsh conditions depending on specific cases. Herein, Hofmeister effect was firstly introduced for the construction of MOFs and thereafter a general salting-in species (SS) induced self-assembly strategy was proposed for the aqueous-phase and mild synthesis of stable MOFs based on a unique “solubilization-mediating” mechanism. The SS not only improved the solubility of organic ligands, but also effectively mediated the mutual proximity of the organic linkers and the inorganic nodes, thus facilitating the crystallization of MOFs under mild conditions. Several typical and highly useful stable MOFs were exemplified owing to the availability of various SS. This strategy could set a framework for the development of more stable MOFs in aqueous phase and drive the large-scale and economic production of MOFs.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education , School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education , School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education , School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| |
Collapse
|
29
|
Wang C, Tan R, Li J, Zhang Z. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Anal Bioanal Chem 2019; 411:2405-2414. [PMID: 30828760 DOI: 10.1007/s00216-019-01684-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In this paper, a fluorescent method was developed for ochratoxin A (OTA) detection that uses iron-doped porous carbon (MPC) and aptamer-functionalized nitrogen-doped graphene quantum dots (NGQDs-Apt) as probes. In this method, the adsorbance of the NGQDs-Apt on the MPC due to a π-π interaction between the aptamer and the MPC results in the quenching of the fluorescence of the NGQDs-Apt. However, since OTA interacts strongly with the aptamer, the presence of OTA leads to the detachment of the NGQDs-Apt from the MPC, resulting in the resumption of fluorescence from the NGQDs-Apt. When exonuclease I (Exo I) is also added to the solution, this exonuclease specifically digests the aptamer, leading to the release of the OTA back into the solution. This free OTA then interacts with another MPC-NGQDs-Apt system, inducing the release of more NGQDs into the solution, which enhances the fluorescent intensity compared to that of the system with no Exo I. Utilizing this behavior of OTA in the presence of NGQDs-Apt, it was possible to detect concentrations of OTA ranging from 10 to 5000 nM, with a limit of detection of 2.28 nM. Our method was tested by applying it to the detection of OTA in wheat and corn samples. This method has four advantages: (1) the magnetic porous carbon is easy to prepare, its porosity enhances its loading capacity for NGQDs, it highly efficiently quenches the fluorescence of the NGQDs, and its magnetic properties facilitate the separation of the MPC from other species in solution; (2) applying double magnetic separation decreases the background signal; (3) Exo I digests the free aptamer effectively, which allows the resulting free OTA to induce the release of more NGQDs-Apt, ultimately enhancing the fluorescent signal; and (4) the proposed method presented high sensitivity and a wide linear detection range. This method may prove helpful in food safety analysis and new biosensor development (achieved by using different aptamer sequences to that used in the present work). Graphical abstract Exonuclease I (Exo I)-assisted fluorescent method for ochratoxin A (OTA) detection using magnetic porous carbon (MPC), nitrogen-doped graphene quantum dots (NGQDs), and double magnetic separation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rong Tan
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangyu Li
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zexiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
30
|
Nangia AK, Desiraju GR. Crystal Engineering: An Outlook for the Future. Angew Chem Int Ed Engl 2019; 58:4100-4107. [PMID: 30488598 DOI: 10.1002/anie.201811313] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers.
Collapse
Affiliation(s)
- Ashwini K Nangia
- CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune, 411 008, India.,School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad, 500 034, India
| | - Gautam R Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
31
|
Affiliation(s)
- Ashwini K. Nangia
- CSIR-National Chemical Laboratory Homi Bhabha Road Pune 411 008 Indien
- School of ChemistryUniversity of HyderabadP.O. Central University Hyderabad 500 034 Indien
| | - Gautam R. Desiraju
- Solid State and Structural Chemistry UnitIndian Institute of Science Bangalore 560 012 Indien
| |
Collapse
|
32
|
Lin D, Liu X, Huang R, Qi W, Su R, He Z. One-pot synthesis of mercapto functionalized Zr-MOFs for the enhanced removal of Hg2+ ions from water. Chem Commun (Camb) 2019; 55:6775-6778. [DOI: 10.1039/c9cc03481a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new one-pot approach was developed for the synthesis of mercapto functionalized Zr-MOFs with high adsorption capacity for Hg2+ ions.
Collapse
Affiliation(s)
- Daiwu Lin
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiao Liu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|