1
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
2
|
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Preparation, Characterization, in-vitro and in-vivo Pharmacokinetic Evaluation of Thermostable Dimethyl Fumarate Cocrystals. J Pharm Sci 2024; 113:647-658. [PMID: 37595751 DOI: 10.1016/j.xphs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 08/20/2023]
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for treating relapsing-remitting multiple sclerosis; but it is susceptible to sublimation leading to its loss during processing. Cocrystals can protect against thermal energy via the interaction of DMF with a coformer via weak forces of interaction. With this hypothesis, we have, for the first time, prepared DMF cocrystals using the solvent evaporation method using coformers like citric acid and succinic acid screened by in-silico predictions and hydrogen bonding properties. Analysis using infra-red (IR), powder x-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation evaluation characterized cocrystals and their thermostability. Comparative analysis of the release profile has been done by dissolution and pharmacokinetic study of DMF and its cocrystals. The cocrystals have improved thermal stability and better pharmacological activities than DMF. In the safety and efficacy evaluation of the formulated cocrystals, they were found to be non-cytotoxic, antioxidant, and inhibiting IL-6 and TNF-α in PBMC induced by lipopolysaccharide (LPS). We have obtained cocrystals of DMF with improved thermal stability and better pharmacological activities than DMF.
Collapse
Affiliation(s)
- Qadir Alam
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| |
Collapse
|
3
|
Zhang Y, Liu H, Chen Z, Meng J, Li Y, Qi L, Zhang S, Chen X, Lei M. A drug-drug cocrystal and a co-amorphous form, prepared from honokiol and ligustrazine, inspired by Chinese patent medicine. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:519-524. [PMID: 37966478 DOI: 10.1107/s2052520623008648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
A drug-drug cocrystal created with two antithrombotic-active ingredients from herbs, honokiol (HON) and ligustrazine (TMP, 1:1), was synthesized and characterized. The structure of HON-TMP (1:1) was determined by single-crystal X-ray diffraction. Then co-amorphous HON-TMP was prepared by honey-assisted grinding, which was inspired by a grinding process for a Chinese patent medicine-Shijunzi honey pill. This co-amorphous drug-drug cocrystal (20% honey) exhibits improved solubility over HON and a significantly reduced sublimation tendency than TMP.
Collapse
Affiliation(s)
- Yanli Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, People's Republic of China
| | - Hui Liu
- Shanghai General Hospital affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Zongxin Chen
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, People's Republic of China
| | - Jialei Meng
- Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Yunfeng Li
- Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Luyao Qi
- Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, People's Republic of China
| | - Suiliang Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, People's Republic of China
| | - Xiaofeng Chen
- National Research Institute for Family Planning, 12 Dahuisi Road, Beijing, 100081, People's Republic of China
| | - Ming Lei
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, People's Republic of China
| |
Collapse
|
4
|
Isobe A, Kajitani T, Yagai S. A Coformer Approach for Supramolecular Polymerization at High Concentrations. Angew Chem Int Ed Engl 2023; 62:e202312516. [PMID: 37737030 DOI: 10.1002/anie.202312516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Insolubility of functional molecules caused by polymorphism sometimes poses limitations for their solution-based processing. Such a situation can also occur in the preparation processes of supramolecular polymers formed in a solution. An effective strategy to address this issue is to prepare amorphous solid states by introducing a "coformer" molecule capable of inhibiting the formation of an insoluble polymorph through co-aggregation. Herein, inspired by the coformer approach, we demonstrated a solubility enhancement of a barbiturate π-conjugated compound that can supramolecularly polymerize through six-membered hydrogen-bonded rosettes. Our newly synthesized supramolecular coformer molecule features a sterically demanding methyl group in the π-conjugated unit of the parent molecule. Although the parent molecule exhibits low solubility in nonpolar solvents due to the formation of a crystalline polymorph comprising a tape-like hydrogen-bonded array prior to the supramolecular polymerization, mixing with the coformer compound enhanced the solubility by inhibiting mesoscopic organization of the tapes. The two monomers were then co-polymerized into desired helicoidal supramolecular polymers through the formation of heteromeric rosettes.
Collapse
Affiliation(s)
- Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8503, Yokohama, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| |
Collapse
|
5
|
Rajapaksha H, Augustine LJ, Mason SE, Forbes TZ. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non-Covalent Interactions in a Uranyl Tetrahalide Model System. Angew Chem Int Ed Engl 2023; 62:e202305073. [PMID: 37177866 DOI: 10.1002/anie.202305073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation betweenE H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Logan J Augustine
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
- Center for Funtional Nanomaterials (CFN), Brookhaven National Labotatory, Upton, NY 52242, USA
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Alam Q, Ganeshpurkar A, Singh SK, Krishnamurthy S. Novel Gastroprotective and Thermostable Cocrystal of Dimethyl Fumarate: Its Preparation, Characterization, and In Vitro and In Vivo Evaluation. ACS OMEGA 2023; 8:26218-26230. [PMID: 37521634 PMCID: PMC10372935 DOI: 10.1021/acsomega.3c02463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Crystallization has revolutionized the field of solid-state formulations by modulating the physiochemical and release profile of active pharmaceutical ingredients (APIs). Dimethyl fumarate (DF), an FDA-approved first-line drug for relapsing-remitting multiple sclerosis, has a sublimation problem, leading to loss of the drug during its processing. To tackle this problem, DF cocrystal has been prepared by using solvent evaporation technique using nicotinamide as a coformer, which has been chosen based on in silico predictions and their ability to participate in hydrogen bonding. Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and sublimation analysis have characterized the cocrystal and its thermostability. Comparative analysis of the release profile has been done by the dissolution and pharmacokinetic study of DF and its cocrystal. Formulated cocrystal is noncytotoxic, antioxidant and inhibits interleukin-6 and tissue necrosis factor-α in peripheral blood mononuclear cells induced by lipopolysaccharide. We have obtained a thermostable cocrystal of DF with a similar physicochemical and release profile to that of DF. The formulated cocrystal also provides a gastroprotective effect which helps counterbalance the adverse effects of DF by reducing lipid peroxidation and total nitrite levels.
Collapse
Affiliation(s)
- Qadir Alam
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| | - Ankit Ganeshpurkar
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sushil Kumar Singh
- Pharmaceutical
Chemistry Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology
(Banaras Hindu University), Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, U.P., India
| |
Collapse
|
7
|
Wang G, Li Y, Qin Z, Liu T. Nanosizing Coamorphous Drugs Using Top-Down Approach: The Effect of Particle Size Reduction on Dissolution Improvement. AAPS PharmSciTech 2022; 24:14. [PMID: 36478061 DOI: 10.1208/s12249-022-02475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology and coamorphous are both advanced technologies that can effectively improve the solubility of drugs. This study has been the first attempt to combine these two approaches to construct the coamorphous nanoparticles to improve the dissolution and investigated the effect of physical properties of coamorphous solid on the nanosizing process. Two types of coamorphous solid, i.e., curcumin-artemisinin and quercetin-lysine, were selected as models. Coamorphous curcumin-artemisinin could highly contribute to the size reduction during milling compared to the crystalline form, which might attribute to the change of crystallinity. Nanosized coamorphous curcumin-artemisinin showed higher dissolution than nanocrystals and single coamorphous sample. However, quercetin-lysine coamorphous nanoparticles did not reflect significant dissolution improvement compared with the microsized sample. The difference of initial dissolutions for both could be the main reason. The directly mixing and drying method was confirmed to be an effective and simple approach to maintain the dissolution of nanosized coamorphous sample.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanchao Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhiguo Qin
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
da Costa NF, Azevedo RF, Lopes JA, Fernandes AI, Pinto JF. In Situ Co-Amorphization of Olanzapine in the Matrix and on the Coat of Pellets. Pharmaceutics 2022; 14:pharmaceutics14122587. [PMID: 36559080 PMCID: PMC9783598 DOI: 10.3390/pharmaceutics14122587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
In situ amorphization is a promising approach, considered in the present work, to enhance the solubility and dissolution rate of olanzapine, while minimizing the exposure of the amorphous material to the stress conditions applied during conventional processing. The production of pellets by extrusion/spheronization and the coating of inert beads were investigated as novel methods to promote the co-amorphization of olanzapine, a poorly water-soluble drug, and saccharin. Samples were characterized using differential scanning calorimetry, X-ray powder diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy, and dissolution and stability testing. The co-amorphous produced were compared with crystalline olanzapine, or physical mixture of olanzapine and saccharin. Results suggested that the addition of water to mixtures containing olanzapine and saccharin during the production of pellets, and the coating of inert beads, induced the in situ co-amorphization of these substances. The coating of inert beads enhanced the solubility and dissolution rate of olanzapine, especially when compared to pellets coated with the crystalline drug, but also with pellets containing the co-amorphous entity in the matrix of beads. Nine months stability tests (23 °C/60% RH) confirmed the preservation of the solid-state properties of the co-amorphous form on/in pellets. Overall, results highlighted the feasibility and benefits of in situ co-amorphization, either when the drug was entrapped in the pellets matrix, or preferentially applied directly on the surface of pellets.
Collapse
Affiliation(s)
- Nuno F. da Costa
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Raquel F. Azevedo
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João A. Lopes
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana I. Fernandes
- CiiEM—Interdisciplinary Research Center Egas Moniz, Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal
- Correspondence: ; Tel.: +351-212946823
| | - João F. Pinto
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
9
|
Preparation and structure analysis of non-covalent interactions directed 11 adducts from 2-amino-5-methylthiazole and organic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Preparation and structure analysis of non-covalent interactions mediated 2D-3D supramolecular adducts from 6-methylnicotinamide and carboxylic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
12
|
Evans CL, Evans IR, Hodgkinson P. Resolving alternative structure determinations of indapamide using 13C solid-state NMR. Chem Commun (Camb) 2022; 58:4767-4770. [PMID: 35343549 DOI: 10.1039/d1cc06256e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conflict between alternative crystal structures in the Cambridge Structural Database for the diuretic drug indapamide hemihydrate (IND) has been resolved with the aid of 13C solid-state NMR. IND is seen to contain multiple distinct molecules in the asymmetric unit (Z' = 4) rather than exhibiting disorder in the orientation of sulfonamide groups. The NMR crystallographic approach is a more effective tool for distinguishing between alternative structures than naïve judgements of quality based on crystallographic refinement agreement factors.
Collapse
Affiliation(s)
- Caitlin L Evans
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | | | - Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
13
|
Tomar D, Lodagekar A, Gunnam A, Allu S, Chavan RB, Tharkar M, Ajithkumar TG, Nangia AK, Shastri NR. The effects of cis and trans butenedioic acid on the physicochemical behavior of lumefantrine. CrystEngComm 2022. [DOI: 10.1039/d0ce01709d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of the differences in the effects of cis (maleic acid) and trans (fumaric acid) isomers of butenedioic acid on the crystallinity, amorphous nature, and pharmaceutical behaviour of the antimalarial drug lumefantrine is provided.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Anurag Lodagekar
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Anilkumar Gunnam
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
| | - Suryanarayana Allu
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
| | - Rahul B. Chavan
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Minakshi Tharkar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - T. G. Ajithkumar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Ashwini K. Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli Central University P.O., Hyderabad 500 046, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Nalini R. Shastri
- Solid-State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| |
Collapse
|
14
|
Synthesis, Characterization, and Intrinsic Dissolution Studies of Drug-Drug Eutectic Solid Forms of Metformin Hydrochloride and Thiazide Diuretics. Pharmaceutics 2021; 13:pharmaceutics13111926. [PMID: 34834341 PMCID: PMC8620433 DOI: 10.3390/pharmaceutics13111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.
Collapse
|
15
|
Mashhadi SMA, Batsanov AS, Sajjad SA, Nazir Y, Bhatti MH, Yunus U. Isoniazid-Gentisic acid cocrystallization: Solubility, Stability, Dissolution rate, Antioxidant and Flowability Properties Studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Fang J, Zhang Z, Bo Y, Xue J, Wang Y, Liu J, Qin J, Hong Z, Du Y. Vibrational spectral and structural characterization of multicomponent ternary co-crystal formation within acetazolamide, nicotinamide and 2-pyridone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118885. [PMID: 32920445 DOI: 10.1016/j.saa.2020.118885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Ternary co-crystal, as a novel co-crystal design strategy developed on the basis of binary co-crystal, could be used to improve the physicochemical properties of active pharmaceutical ingredients (APIs) efficiently. However, it is difficult to obtain specific ternary co-crystals since such ternary one involves complex assembly of three different molecules. There are few reports on the micro-molecular structure respect of specific ternary co-crystal systems. In present work, 1:1:1 ternary co-crystal between acetazolamide (ACZ), nicotinamide (NAM) and 2-pyridone (2HP) has been synthesized successfully by mechanical grinding approach, and their structures are investigated by terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy combined with theoretical calculation at the molecular level. The experimental THz spectral results showed that ACZ-NAM-2HP ternary co-crystal and the starting parent materials exhibited a few distinct spectral features in frequency-domain absorption spectra. Likewise, the Raman spectral result also shows some difference between the co-crystal and starting raw materials. Through density functional theory (DFT) calculations, the theoretical THz/Raman spectra and vibrational modes of two kind of possible ternary co-crystal theoretical forms (form I and II) between ACZ, NAM and 2HP were obtained. By comparing experimental and theoretical spectral results, the most suitable structure and vibrational modes of ACZ-NAM-2HP ternary co-crystal were determined. These results provide a wealth of information and unique method for studying molecular assembly and also inter-molecular interactions in specific ternary co-crystals at the molecular level in the emerging pharmaceutical co-crystal fields.
Collapse
Affiliation(s)
- Jiyuan Fang
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Ziming Zhang
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Yanhua Bo
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Yaguo Wang
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Jianyuan Qin
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province 310018, PR China.
| |
Collapse
|