1
|
Cheng T, Meng Y, Luo M, Xian J, Luo W, Wang W, Yue F, Ho JC, Yu C, Chu J. Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403129. [PMID: 39030967 DOI: 10.1002/smll.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Indexed: 07/22/2024]
Abstract
The strategic integration of low-dimensional InAs-based materials and emerging van der Waals systems is advancing in various scientific fields, including electronics, optics, and magnetics. With their unique properties, these InAs-based van der Waals materials and devices promise further miniaturization of semiconductor devices in line with Moore's Law. However, progress in this area lags behind other 2D materials like graphene and boron nitride. Challenges include synthesizing pure crystalline phase InAs nanostructures and single-atomic-layer 2D InAs films, both vital for advanced van der Waals heterostructures. Also, diverse surface state effects on InAs-based van der Waals devices complicate their performance evaluation. This review discusses the experimental advances in the van der Waals epitaxy of InAs-based materials and the working principles of InAs-based van der Waals devices. Theoretical achievements in understanding and guiding the design of InAs-based van der Waals systems are highlighted. Focusing on advancing novel selective area growth and remote epitaxy, exploring multi-functional applications, and incorporating deep learning into first-principles calculations are proposed. These initiatives aim to overcome existing bottlenecks and accelerate transformative advancements in integrating InAs and van der Waals heterostructures.
Collapse
Affiliation(s)
- Tiantian Cheng
- School of Microelectronics and School of Integrated Circuits, School of Information Science and Technology, Nantong University, Nantong, 226019, P. R. China
| | - Yuxin Meng
- School of Microelectronics and School of Integrated Circuits, School of Information Science and Technology, Nantong University, Nantong, 226019, P. R. China
| | - Man Luo
- School of Microelectronics and School of Integrated Circuits, School of Information Science and Technology, Nantong University, Nantong, 226019, P. R. China
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jiachi Xian
- School of Microelectronics and School of Integrated Circuits, School of Information Science and Technology, Nantong University, Nantong, 226019, P. R. China
| | - Wenjin Luo
- Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA
| | - Weijun Wang
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Fangyu Yue
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Johnny C Ho
- Department of Materials Science and Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Chenhui Yu
- School of Microelectronics and School of Integrated Circuits, School of Information Science and Technology, Nantong University, Nantong, 226019, P. R. China
| | - Junhao Chu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
2
|
Huang PY, Qin JK, Zhu CY, Zhen L, Xu CY. 2D-1D mixed-dimensional heterostructures: progress, device applications and perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:493001. [PMID: 34479213 DOI: 10.1088/1361-648x/ac2388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted broad interests and been extensively exploited for a variety of functional applications. Moreover, one-dimensional (1D) atomic crystals can also be integrated into 2D templates to create mixed-dimensional heterostructures, and the versatility of combinations provides 2D-1D heterostructures plenty of intriguing physical properties, making them promising candidate to construct novel electronic and optoelectronic nanodevices. In this review, we first briefly present an introduction of relevant fabrication methods and structural configurations for 2D-1D heterostructures integration. We then discuss the emerged intriguing physics, including high optical absorption, efficient carrier separation, fast charge transfer and plasmon-exciton interconversion. Their potential applications such as electronic/optoelectronic devices, photonic devices, spintronic devices and gas sensors, are also discussed. Finally, we provide a brief perspective for the future opportunities and challenges in this emerging field.
Collapse
Affiliation(s)
- Pei-Yu Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Jing-Kai Qin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Cheng-Yi Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
3
|
Baboli MA, Abrand A, Burke RA, Fedorenko A, Wilhelm TS, Polly SJ, Dubey M, Hubbard SM, Mohseni PK. Mixed-dimensional InAs nanowire on layered molybdenum disulfide heterostructures via selective-area van der Waals epitaxy. NANOSCALE ADVANCES 2021; 3:2802-2811. [PMID: 36134188 PMCID: PMC9419183 DOI: 10.1039/d0na00768d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/19/2021] [Indexed: 06/16/2023]
Abstract
Self-assembly of vertically aligned III-V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS2) domains is reported for the first time. The MOCVD growth parameter space (i.e., V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS2 micro-plates with one-to-one NW-to-MoS2 domain placement. The introduction of a pre-growth poly-l-lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo-Mo (or S-S) spacing along the [101̄0] direction of MoS2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III-V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies.
Collapse
Affiliation(s)
- Mohadeseh A Baboli
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Alireza Abrand
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Robert A Burke
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory Adelphi MD 20783 USA
- General Technical Services, LLC Wall NJ 07727 USA
| | - Anastasiia Fedorenko
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Thomas S Wilhelm
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Stephen J Polly
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Madan Dubey
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory Adelphi MD 20783 USA
| | - Seth M Hubbard
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| | - Parsian K Mohseni
- Microsystems Engineering, Rochester Institute of Technology Rochester NY 14623 USA
- NanoPower Research Laboratories, Rochester Institute of Technology Rochester NY 14623 USA
| |
Collapse
|
4
|
Anyebe EA, Kesaria M. Recent advances in the Van der Waals epitaxy growth of III‐V semiconductor nanowires on graphene. NANO SELECT 2020. [DOI: 10.1002/nano.202000142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Berdnikov Y, Sibirev NV, Khayrudinov V, Alaferdov A, Moshkalev S, Ubyivovk EV, Lipsanen H, Bouravleuv A. Growth of GaAs nanowire–graphite nanoplatelet hybrid structures. CrystEngComm 2019. [DOI: 10.1039/c9ce01027k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scenarios of MOVPE growth of planar and non-planar GaAs nanowires are controlled with graphite nanoplatelet substrates and catalyst placement.
Collapse
Affiliation(s)
| | | | | | - Andrei Alaferdov
- Center for Semiconductor Components
- State University of Campinas
- Campinas
- Brazil
| | - Stanislav Moshkalev
- Center for Semiconductor Components
- State University of Campinas
- Campinas
- Brazil
| | | | - Harri Lipsanen
- Department of Electronics and Nanoengineering
- Micronova, Aalto University
- Finland
| | - Alexei Bouravleuv
- Department of Electronics and Nanoengineering
- Micronova, Aalto University
- Finland
- St. Petersburg Academic University
- 194021 St. Petersburg
| |
Collapse
|
6
|
Li P, Li K, Sun S, Chen C, Wang BG. Construction, characterization, and growth mechanism of high-density jellyfish-like GaN/SiOxNy nanomaterials on p-Si substrate by Au-assisted chemical vapor deposition approach. CrystEngComm 2019. [DOI: 10.1039/c9ce00317g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density GaN/SiOxNy jellyfish-like nanomaterials are synthesized on Au-coated p-type Si substrates by a chemical vapor deposition approach.
Collapse
Affiliation(s)
- Pengkun Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou
| | - Kang Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou
| | - Shujing Sun
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou
| | - Chenlong Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou
| | - B. G. Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Science
- Fuzhou
| |
Collapse
|