1
|
Jordan JS, Harper CC, Zhang F, Kofman E, Li M, Sathiyamoorthy K, Zaragoza JP, Fayadat-Dilman L, Williams ER. Charge Detection Mass Spectrometry Reveals Conformational Heterogeneity in Megadalton-Sized Monoclonal Antibody Aggregates. J Am Chem Soc 2024; 146:23297-23305. [PMID: 39110484 DOI: 10.1021/jacs.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Mandy Li
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Jan Paulo Zaragoza
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
2
|
Carrick IJ, Fabijanczuk KC, Rong J, McLuckey SA. Tandem mass spectrometry using continuous-wave infrared multiphoton dissociation in an electrostatic linear ion trap. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9698. [PMID: 38356088 DOI: 10.1002/rcm.9698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE The electrostatic linear ion trap (ELIT) can be operated as a multi-reflection time-of-flight (MR-TOF) or Fourier transform (FT) mass analyzer. It has been shown to be capable of performing high-resolution mass analysis and high-resolution ion isolations. Although it has been used in charge-detection mass spectrometry (CDMS), it has not been widely used as a conventional mass spectrometer for ensemble measurements of ions, or for tandem mass spectrometer. The advantages of tandem mass spectrometer with high-resolution ion isolations in the ELIT have thus not been fully exploited. METHODS A homebuilt ELIT was modified with BaF2 viewports to facilitate transmission of a laser beam at the turnaround point of the second ion mirror in the ELIT. Fragmentation that occurs at the turnaround point of these ion mirrors should result in minimal energy partitioning due to the low kinetic energy of ions at these points. The laser was allowed to irradiate ions for a period of many oscillations in the ELIT. RESULTS Due to the low energy absorption of gas-phase ions during each oscillation in the ELIT, fragmentation was found to occur over a range of oscillations in the ELIT generating a homogeneous ion beam. A mirror-switching pulse is shown to create time-varying perturbations in this beam that oscillate at the fragment ion characteristic frequencies and generate a time-domain signal. This was found to recover FT signal for protonated pYGGFL and pSGGFL precursor ions. CONCLUSIONS Fragmentation at the turnaround point of an ELIT by continuous-wave infrared multiphoton dissociation (cw-IRMPD) is demonstrated. In cases where laser power absorption is low and fragmentation occurs over many laps, a mirror-switching pulse may be used to recover varying time-domain signal. The combination of laser activation at the turnaround points and mirror-switching isolation allows for tandem MS in the ELIT.
Collapse
Affiliation(s)
- Ian J Carrick
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Botamanenko DY, Reitenbach DW, Miller LM, Jarrold MF. Electrostatic Linear Ion Trap Optimization Strategy for High Resolution Charge Detection Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1731-1740. [PMID: 37466262 PMCID: PMC10842736 DOI: 10.1021/jasms.3c00177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Single ion mass measurements allow mass distributions to be recorded for heterogeneous samples that cannot be analyzed by conventional mass spectrometry. In charge detection mass spectrometry (CD-MS), ions are detected using a conducting cylinder coupled to a charge sensitive amplifier. For optimum performance, the detection cylinder is embedded in an electrostatic linear ion trap (ELIT) where trapped ions oscillate between end-caps that act as opposing ion mirrors. The oscillating ions generate a periodic signal that is analyzed by fast Fourier transforms. The frequency yields the m/z, and the magnitude provides the charge. With a charge precision of 0.2 elementary charges, ions can be assigned to their correct charge states with a low error rate, and the m/z resolving power determines the mass resolving power. Previously, the best mass resolving power achieved with CD-MS was 300. We have recently increased the mass resolving power to 700, through the better optimization of the end-cap potentials. To make a more dramatic improvement in the m/z resolving power, it is necessary to find an ELIT geometry and end-cap potentials that can simultaneously make the ion oscillation frequency independent of both the ion energy and ion trajectory (angular divergence and radial offset) of the entering ion. We describe an optimization strategy that allows these conditions to be met while also adjusting the signal duty cycle to 50% to maximize the signal-to-noise ratio for the charge measurement. The optimized ELIT provides an m/z resolving power of over 300 000 in simulations. Coupled with the high precision charge determination available with CD-MS, this will yield a mass resolving power of 300 000. Such a high mass resolving power will be transformative for the analysis of heterogeneous samples.
Collapse
Affiliation(s)
- Daniel Y Botamanenko
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
- Megadalton Solutions Inc., 3750 E Bluebird Lane, Bloomington, Indiana 47401
| | - David W Reitenbach
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Lohra M Miller
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| |
Collapse
|
4
|
Abstract
Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of their mass-to-charge ratio (m/z) and charge. Masses are determined for thousands of individual ions, and then the results are binned to give a mass spectrum. Using this approach, accurate mass distributions can be measured for heterogeneous and high-molecular-weight samples that are usually not amenable to analysis by conventional mass spectrometry. Recent applications include heavily glycosylated proteins, protein complexes, protein aggregates such as amyloid fibers, infectious viruses, gene therapies, vaccines, and vesicles such as exosomes.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47404, United States
| |
Collapse
|
5
|
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: What can we learn from charge detection mass spectrometry? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8539. [PMID: 31353622 DOI: 10.1002/rcm.8539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.
Collapse
Affiliation(s)
- Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622, Lyon, France
| |
Collapse
|
6
|
Harper CC, Williams ER. Enhanced Multiplexing in Fourier Transform Charge Detection Mass Spectrometry by Decoupling Ion Frequency from Mass to Charge Ratio. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2637-2645. [PMID: 31720975 DOI: 10.1007/s13361-019-02330-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Weighing single ions with charge detection mass spectrometry (CDMS) makes it possible to obtain the masses of molecules of essentially unlimited size even in highly heterogeneous samples, but producing a mass histogram that is representative of all of the components in a mixture requires substantial measurement time. Multiple ions can be trapped to reduce analysis time but ion signals can overlap. To determine the maximum gains in analysis speed possible with current instrumentation with multiple ion trapping, simulations calculating the frequency and overlap rate of ions with different mass, charge, and energy ranges were performed. For an analyte with a broad mass distribution, such as long chain polyethylene glycol (PEG, 8 MDa), gains in analysis speed of up to 160 times that of prior CDMS experiments are possible. For signals from homogeneous samples, ions with the same m/z have frequencies that overlap and interfere, reducing the effectiveness of multiplexing in experiments where ions have the same energy per charge. We show that by maximizing the decoupling of ion m/z from frequency using a broad range of ion energies, the rate of signal overlap is significantly reduced making it possible to trap more ions. Under optimum decoupling conditions, a measurement speed nearly 50 times greater than that of prior CDMS experiments is possible for RuBisCO (517 kDa). The reduction in overlap due to decoupling also results in more accurate quantitation in samples that contain multiple analytes with different concentrations.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
7
|
Kafader JO, Beu SC, Early BP, Melani RD, Durbin KR, Zabrouskov V, Makarov AA, Maze JT, Shinholt DL, Yip PF, Kelleher NL, Compton PD, Senko MW. STORI Plots Enable Accurate Tracking of Individual Ion Signals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2200-2203. [PMID: 31512223 PMCID: PMC6852666 DOI: 10.1007/s13361-019-02309-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
Charge detection mass spectrometry (CDMS) of low-level signals is currently limited to the analysis of individual ions that generate a persistent signal during the entire observation period. Ions that disintegrate during the observation period produce reduced frequency domain signal amplitudes, which lead to an underestimation of the ion charge state, and thus the ion mass. The charge assignment can only be corrected through an accurate determination of the time of ion disintegration. The traditional mechanisms for temporal signal analysis have severe limitations for temporal resolution, spectral resolution, and signal-to-noise ratios. Selective Temporal Overview of Resonant Ions (STORI) plots provide a new framework to accurately analyze low-level time domain signals of individual ions. STORI plots allow for complete correction of intermittent signals, the differentiation of single and multiple ions at the same frequency, and the association of signals that spontaneously change frequency.
Collapse
Affiliation(s)
- Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | | | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | | | | | | | | | - Ping F Yip
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, IL, 60208, USA
| | | |
Collapse
|
8
|
Elliott AG, Harper CC, Lin HW, Williams ER. Effects of Individual Ion Energies on Charge Measurements in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:946-955. [PMID: 30430436 DOI: 10.1007/s13361-018-2094-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
A method to correct for the effect of ion energy on charge measurements of individual ions trapped and weighed with charge detection mass spectrometry (CDMS) is demonstrated. Ions with different energies induce different signal patterns inside an electrostatic ion trap. The sum of the amplitudes of the fundamental and second harmonic frequencies in the Fourier transform of the induced signal, which has been used to obtain the ion charge, depends on both ion energy and charge. The amplitudes of the fundamental frequencies of ions increase over time as ions lose energy by collisions with background gas and solvent loss from larger ions. Model ion signals are simulated with the same time-domain amplitude at different energies and frequencies and the resulting fundamental frequency amplitudes are used to normalize real ion signals for energy and frequency effects. The fundamental frequency amplitude decreases dramatically below 20 kHz and increases by ~ 17% from the highest energy to lowest energy that is stable with a given trap potential at all frequencies. Normalizing the fundamental frequency amplitude with the modeled amplitudes removes the systematic changes in the charge measurement of polyethylene glycol (PEG) and other ions and makes it possible to signal average the amplitude over long times, which reduces the charge uncertainty to 0.04% for a PEG ion for a 500-ms measurement. This method improves charge measurement accuracy and uncertainty, which are important for high-accuracy mass measurement with CDMS. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Andrew G Elliott
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Haw-Wei Lin
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
9
|
Harper CC, Elliott AG, Oltrogge LM, Savage DF, Williams ER. Multiplexed Charge Detection Mass Spectrometry for High-Throughput Single Ion Analysis of Large Molecules. Anal Chem 2019; 91:7458-7465. [PMID: 31082222 DOI: 10.1021/acs.analchem.9b01669] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Applications of charge detection mass spectrometry (CDMS) for measuring the masses of large molecules, macromolecular complexes, and synthetic polymers that are too large or heterogeneous for conventional mass spectrometry measurements are made possible by weighing individual ions in order to avoid interferences between ions. Here, a new multiplexing method that makes it possible to measure the masses of many ions simultaneously in CDMS is demonstrated. Ions with a broad range of kinetic energies are trapped. The energy of each ion is obtained from the ratio of the intensity of the fundamental to the second harmonic frequencies of the periodic trapping motion making it possible to measure both the m/ z and charge of each ion. Because ions with the exact same m/ z but with different energies appear at different frequencies, the probability of ion-ion interference is significantly reduced. We show that the measured mass of a protein complex consisting of 16 protomers, RuBisCO (517 kDa), is not affected by the number of trapped ions with up to 21 ions trapped simultaneously in these experiments. Ion-ion interactions do not affect the ion trapping lifetime up to 1 s, and there is no influence of the number of ions on the measured charge-state distribution of bovine serum albumin (66.5 kDa), indicating that ion-ion interactions do not adversely affect any of these measurements. Over an order of magnitude gain in measurement speed over single ion analysis is demonstrated, and significant additional gains are expected with this multi-ion measurement method.
Collapse
|
10
|
Halim MA, Bertorelle F, Doussineau T, Antoine R. Direct determination of molecular weight distribution of calf-thymus DNAs and study of their fragmentation under ultrasonic and low-energy infrared irradiations. A charge detection mass spectrometry investigation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:35-39. [PMID: 29885254 DOI: 10.1002/rcm.8204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Calf-thymus (CT-DNA) is widely used as a binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products could have dramatic consequences on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. METHODS We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes in molecular weight distributions in the course of sonication by irradiating ultrasonic waves to CT-DNA. RESULTS We report, for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing extraction of their activation energy for unimolecular dissociation. CONCLUSIONS We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs.
Collapse
Affiliation(s)
- Mohammad A Halim
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Franck Bertorelle
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Tristan Doussineau
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Rodolphe Antoine
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| |
Collapse
|
11
|
Rodgers MT. Robert C. Dunbar: CURRICULUM VITAE: June 26, 1943, Boston, Massachusetts-October 31, 2017, Cleveland, Ohio. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:8-15. [PMID: 30773921 DOI: 10.1177/1469066718817618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|