1
|
Navya PV, Ganesan K, Neyts EC, Sampath S. Heterocycle- and Amine-Free Electrochromic and Electrofluorochromic Molecules for Energy-Saving See-Through Smart Windows and Displays. Chemistry 2024; 30:e202401647. [PMID: 38747442 DOI: 10.1002/chem.202401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Electrochromic (EC) smart windows are an elegant alternative to dusty curtains, blinds, and traditional dimming devices. The EC energy storage smart windows and displays received remarkable attention in the optoelectronic industry as they hold promise for high energy efficiency, low power consumption, reversibility, and swift response to stimuli. However, achieving these properties remains challenging. Moreover, most EC molecules do not exhibit electrofluorochromism, which is highly essential for smart displays because its EC property can modulate the solar heat entering the building, and its electrofluorochromic (EFC) aspects can create lighting during the night. In this work, a structure-property relationship is utilized to develop new electrochromes that can store the injected charge, and these molecules indeed exhibit electrofluorochromism. The compounds are synthesized from tetrabenzofluorene with two aromatic acceptor units, and avoids the use of widely studied heterocycles and amine derivatives. The electrochromes switches from yellow to dark hue in solution, solid, and gel state. The compounds display exceptional electrochemical stability and reversibility in 1000 cycles and capacity retention of 93-100 % in 300 charging-discharging cycles. The proof-of-concept device fabrication of the self-dimming EC smart window presented here demonstrates that it can furnish visual comfort, modulate transmitted light and glare, and reduce energy usage.
Collapse
Affiliation(s)
- Panichiyil V Navya
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Krithika Ganesan
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Erik C Neyts
- MOSAIC Research Group, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Srinivasan Sampath
- Soft Functional Hybrid Materials Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
2
|
Wang Y, Gianopoulos CG, Liu Z, Kirschbaum K, Alfonso D, Kauffman DR, Jin R. Au 36(SR) 22 Nanocluster and a Periodic Pattern from Six to Fourteen Free Electrons in Core Size Evolution. JACS AU 2024; 4:1928-1934. [PMID: 38818069 PMCID: PMC11134389 DOI: 10.1021/jacsau.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
An Au36(S-tBu)22 nanocluster (NC) is synthesized using the bulky tert-butyl thiol as the ligand. Single-crystal X-ray crystallography reveals that it has an Au25 core which evolves from the Au22 core in the previously reported Au30(S-tBu)18, and the Au25 core is protected by longer staple-like surface motifs. The new Au36 NC extends the members of the face-centered cubic structural evolution by adding an Au3 triangle and an Au4 tetrahedron unit. Additionally, it is found that Au36 emits near-infrared photoluminescence at 863 nm with a quantum yield (QY) of 4.3%, which is five times larger than that of Au30(S-tBu)18-the closest neighbor in the structural evolution pattern. The higher QY of Au36 is attributed to a larger radiative relaxation (kr), resulting from the structural effect. Finally, we find that the longer staple motifs lead to enhanced stability of Au36(S-tBu)22 relative to Au30(S-tBu)18.
Collapse
Affiliation(s)
- Yitong Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Zhongyu Liu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Dominic Alfonso
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|
4
|
Zhang Y, Liang Z, Ni L, Huang L, Yang Y, Xiao Y. Enhanced Stability and Luminous Performance for Structured Mn‐Doped CsPbCl
3
Quantum Dots. ChemistrySelect 2021. [DOI: 10.1002/slct.202102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Zhang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Zhenyao Liang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Liang Ni
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Le Huang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Yibin Yang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Ye Xiao
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Information Photonics Technolology Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
5
|
Zhang BH, Li JA, Wang M, Ren AM, He TF, Lin PP, Zhang YL, Xi XY, Zou LY. From luminescence quenching to high-efficiency phosphorescence: a theoretical study on the monomeric and dimeric forms of platinum(II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates. Phys Chem Chem Phys 2021; 23:5652-5664. [PMID: 33656501 DOI: 10.1039/d0cp06269c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop solid-state light-emitting materials with high luminescence efficiency, determining the potential photophysics and luminescence mechanisms of the aggregation state remains a challenge and a priority. Here, we apply density functional theory to study the photophysical properties of a series of square planar Pt(ii) complexes in both monomeric and dimeric forms. We reveal that four monomeric Pt(ii) complexes are dominated by triplet ligand-to-ligand charge-transfer, and the lack of the triplet metal-to-ligand charge-transfer feature results in weak spin-orbit coupling (SOC), which leads to limited radiative rates; moreover, calculated nonradiative transition rates are one or two orders of magnitude higher than those radiative rates because a large amount of reorganization energy caused by the vibration of the bipyrazolate (bipz) ligand cannot be readily suppressed in the monomeric form. Therefore, four monomers exhibit photoluminescence quenching in CH2Cl2 solution in both theoretical calculations and experiments. However, in the solid state, the intense luminescence phenomenon indicates obviously distinct properties between the monomer and aggregation. We carried out a dimer model to interpret that the interaction of PtPt induces a metal-metal-to-ligand charge-transfer excimeric state, which leads more metal components to participate in the charge transfer and enhance the SOC effect. At the same time, the ligand vibration can be significantly reduced by the shortened distance, and there is a strong π-π packing interaction in the dimer; thus, an excellent quantum yield can be achieved in aggregation. In addition, we disclose that introducing bulky substituents bearing electron-donating groups at R' and R'' positions have little effect on the properties of the monomers; however, there is a benefit of restricting the internal reorganization energy through the intermolecular interaction when packing in the solid state. Therefore, substitutions can be tuned to improve the properties of monomers (such as emission energy and reorganization energy). We hope that our work will shine some light on Pt(ii) emitters in the fabrication of efficient OLEDs.
Collapse
Affiliation(s)
- Bo-Hua Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Jun-An Li
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
| | - Min Wang
- Department of Prosthodontics, School of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Teng-Fei He
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Pan-Pan Lin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Yun-Li Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Xiao-Yue Xi
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| |
Collapse
|
6
|
He TF, Ren AM, Li GH, Qu ZX, Guo JF, Hao XL, Chen YN, Shen L, Zhang YL, Zou LY. Impact of Δ EST on Delayed Fluorescence Rate, Lifetime, and Intensity Ratio of Tetrahedral Cu(I) Complexes: Theoretical Simulation in Solution and Solid Phases. J Phys Chem Lett 2021; 12:2232-2244. [PMID: 33635675 DOI: 10.1021/acs.jpclett.1c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Profound understanding of the luminescence mechanism and structure-property relationship is vital for Cu(I) thermally activated delayed fluorescence (TADF) emitters. Herein, we theoretically simulated luminescent behavior in both solution and solid phases for two Cu(I) complexes and found the following: (i) The strengthened spin-orbit coupling (SOC) effect by more dx2-y2 orbital contributions and well-restricted structural distortion via remarkable intramolecular interaction in [Cu(dmp)(POP)]+ enable the emission at room temperature to be a mixture of direct phosphorescence (10%) and TADF (90%). (ii) Benefiting from enhanced steric hindrance and the electron-donating ability of the paracyclophane group, the narrowed S1-T1 energy separation (ΔEST) in [Cu(dmp)(phanephos)]+ accelerates the reverse intersystem crossing, promoting the TADF rate (1.88 × 105 s-1) and intensity ratio (98.3%). These results indicate that the small ΔEST is superior for reducing the lifetime and that the strong SOC stimulates the phosphorescence to compete with TADF, which are both conducive to avoiding collision-induced exciton quenching and reducing the roll-off in devices.
Collapse
Affiliation(s)
- Teng-Fei He
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Guo-Hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P.R. China
| | - Ze-Xing Qu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P.R. China
| | - Xue-Li Hao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Yuan-Nan Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Lu Shen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Yun-Li Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| |
Collapse
|
7
|
He TF, Ren AM, Chen YN, Hao XL, Shen L, Zhang BH, Wu TS, Zhang HX, Zou LY. Molecular-Level Insight of Cu(I) Complexes with the 7,8-Bis(diphenylphosphino)-7,8-dicarba- nido-undecaborate Ligand as a Thermally Activated Delayed Fluorescence Emitter: Luminescent Mechanism and Design Strategy. Inorg Chem 2020; 59:12039-12053. [PMID: 32786269 DOI: 10.1021/acs.inorgchem.0c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Investigation of the clear structure-property relationship and microscopic mechanism of thermally activated delayed fluorescence (TADF) emitters with high emission quantum yield is a direction worthy of continuous efforts. The instructive theoretical principle of TADF material design is critical and challenging. Here, we carried out theoretical calculation on two experimental Cu(I) complexes with the same 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate (dppnc) but different N^N ligands [dmbpy = 6,6'-dimethyl-2,2'-bipyridine (1) or dmp = 2,9-dimethyl-1,10-phenanthroline (2)] to briefly elaborate the structure-TADF performance relationship and luminescence mechanism. It was found that enhanced rigidity by the fused benzene ring between two pyridyl units in complex 2 leads to (i) higher allowedness of S1 → S0, (ii) more effective reverse intersystem crossing (RISC), and (iii) better relative stability of the T1 state, which could be responsible for its excellent TADF behavior. Thus, a strategy of extending π conjugation in the N^N ligand could be deduced to further enhance the quantum yield. We validated it and have succeeded in designing analogue complex 4 by extending π conjugation with an electron-withdrawing pyrazinyl. Benefiting from the smaller energy gap (ΔEST) and plunged reorganization energy between the S1 and T1 states, the rate of RISC in complex 4 (1.05 × 108 s-1) increased 2 orders of magnitude relative to that of 2 (5.80 × 106 s-1), showing more superiority of the TADF behavior through a better balance of RISC, fluorescence, and phosphorescence decay. Meanwhile, the thermally activated temperature of 4 is only 165 K, implying that there is a low-energy barrier. All of these indicate that the designed complex 4 may be a potential TADF candidate.
Collapse
Affiliation(s)
- Teng-Fei He
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Yuan-Nan Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xue-Li Hao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu Shen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Bo-Hua Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Tong-Shun Wu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
8
|
Cai W, Zhang H, Yan X, Zhao A, He R, Li M, Meng Q, Shen W. What accounts for the color purity of tetradentate Pt complexes? A computational analysis. Phys Chem Chem Phys 2019; 21:8073-8080. [PMID: 30932122 DOI: 10.1039/c9cp00819e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the texture of human visual perception and broaden the range of certain optical applications, many phosphorescent complexes exhibiting narrow emission spectra have been prepared through reasonable molecular design. For example, by adding a particular group such as tert-butyl (tbu) to a suitable position of PtON1 and PtON7, the peak width of a relevant vibronic band caused by the specific vibrational normal modes could be dramatically restrained in the emission spectra at room temperature. For the purpose of finding an effective approach to replace the trial-and-error manner, the microscopic mechanism of such high color purity was elucidated by computational investigation. In this study, we aim to identify the reason that causes sharp emission associated with the relevant vibrational normal modes. Here, these modes can be labeled to the emission peak by the vibrationally resolved emission spectra. Based on the displacement vectors of relevant normal modes and the vibrationally resolved spectra, the most possible reason for the higher color purity is that tbu in a specific location can restrain the structural deformation between the first triplet excited state (T1) and the ground state (S0). That is to say, the relevant Huang-Rhys factor (Sk) of specific vibrational modes would be decreased. For these compounds, the total bandwidth and the height of the intermediate and high-frequency regions which are in direct proportion to Sk would be decreased to obtain the higher color purity by tbu in a particular position. What is more, the best position for tbu in order to suppress the structural deformation was also considered. In the meantime, radiative (kr) and nonradiative (knr) decay rates of T1 were investigated to seek the effective phosphorescent complexes.
Collapse
Affiliation(s)
- Wanlin Cai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Föller J, Ganter C, Steffen A, Marian CM. Computer-Aided Design of Luminescent Linear N-Heterocyclic Carbene Copper(I) Pyridine Complexes. Inorg Chem 2019; 58:5446-5456. [PMID: 30995025 DOI: 10.1021/acs.inorgchem.9b00334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multireference configuration interaction methods including spin-orbit interactions have been employed to investigate the photophysical properties of various linear N-heterocyclic carbene (NHC) copper(I) pyridine complexes with the aim of designing performant thermally activated delayed fluorescence (TADF) emitters for use in organic-light-emitting diodes. Our theoretical results indicate that this structural motif is very favorable for generating excited triplet states with high quantum yield. The first excited singlet (SMLCT) and corresponding triplet state (TMLCT) are characterized by dσ → πPy metal-to-ligand charge-transfer (MLCT) excitations. Efficient intersystem crossing (ISC) and reverse ISC (rISC) between these states is mediated by a near-degenerate second triplet state (TMLCT/LC) with large dπ → πPy contributions. Spin-vibronic coupling is strong and is expected to play a major role in the (r)ISC processes. The calculations reveal, however, that the luminescence is effectively quenched by locally excited triplet states if the NHC ligand carries two diisopropylphenyl (DIPP) substituents. When DIPP is replaced with 1-adamantyl residues, this quenching process is suppressed and TADF in the UV spectral regime is predicted to proceed at a rate of about 1/μs. The introduction of +I substituents on the carbene and -M substituents on the pyridine allows tuning of the emission wavelength from the UV to the blue-green or green spectral region.
Collapse
Affiliation(s)
| | | | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Strasse 6 , D-44227 Dortmund , Germany
| | | |
Collapse
|
10
|
New bipyridine ruthenium dye complexes with amide based ancillary ligands as sensitizers in semitransparent quasi-solid-state dye sensitized solar cells. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|