1
|
Maillard J, Grassin E, Bestsennaia E, Silaghi M, Straková K, García-Calvo J, Sakai N, Matile S, Fürstenberg A. Single-Molecule Localization Microscopy and Tracking with a Fluorescent Mechanosensitive Probe. J Phys Chem B 2024; 128:7997-8006. [PMID: 39119910 DOI: 10.1021/acs.jpcb.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A milestone in optical imaging of mechanical forces in cells has been the development of the family of flipper fluorescent probes able to report membrane tension noninvasively in living cells through their fluorescence lifetime. The specifically designed Flipper-CF3 probe with an engineered inherent blinking mechanism was recently introduced for super-resolution fluorescence microscopy of lipid ordered membranes but was too dim to be detected in lipid disordered membranes at the single-molecule level (García-Calvo, J. J. Am. Chem. Soc. 2020, 142(28), 12034-12038). We show here that the original and commercially available probe Flipper-TR is compatible with single-molecule based super-resolution imaging and resolves both liquid ordered and liquid disordered membranes of giant unilamellar vesicles below the diffraction limit. Single probe molecules were additionally tracked in lipid bilayers, enabling to distinguish membranes of varying composition from the diffusion coefficient of the probe. Differences in brightness between Flipper-CF3 and Flipper-TR originate in their steady-state absorption and fluorescence properties. The general compatibility of the Flipper-TR scaffold with single-molecule detection is further shown in super-resolution experiments with targetable Flipper-TR derivatives.
Collapse
Affiliation(s)
- Jimmy Maillard
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Ewa Grassin
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Ekaterina Bestsennaia
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Melinda Silaghi
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Karolina Straková
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Assies L, García-Calvo J, Piazzolla F, Sanchez S, Kato T, Reymond L, Goujon A, Colom A, López-Andarias J, Straková K, Mahecic D, Mercier V, Riggi M, Jiménez-Rojo N, Roffay C, Licari G, Tsemperouli M, Neuhaus F, Fürstenberg A, Vauthey E, Hoogendoorn S, Gonzalez-Gaitan M, Zumbuehl A, Sugihara K, Gruenberg J, Riezman H, Loewith R, Manley S, Roux A, Winssinger N, Sakai N, Pitsch S, Matile S. Flipper Probes for the Community. Chimia (Aarau) 2021; 75:1004-1011. [PMID: 34920768 DOI: 10.2533/chimia.2021.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.
Collapse
Affiliation(s)
- Lea Assies
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - José García-Calvo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Francesca Piazzolla
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Samantha Sanchez
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Takehiro Kato
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Luc Reymond
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Antoine Goujon
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Adai Colom
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Javier López-Andarias
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Karolína Straková
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Dora Mahecic
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Vincent Mercier
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Margot Riggi
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva; Department of Molecular Biology, University of Geneva
| | - Noemi Jiménez-Rojo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Chloé Roffay
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | | | - Maria Tsemperouli
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Frederik Neuhaus
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva; Department of Inorganic and Analytical Chemistry, University of Geneva
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva
| | - Sascha Hoogendoorn
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Andreas Zumbuehl
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Kaori Sugihara
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Physical Chemistry, University of Geneva
| | - Jean Gruenberg
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Robbie Loewith
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Molecular Biology, University of Geneva
| | - Suliana Manley
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Aurelien Roux
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Stefan Pitsch
- Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland;,
| |
Collapse
|
5
|
Le Breton G, Bonhomme O, Brevet PF, Benichou E, Loison C. First hyperpolarizability of water at the air-vapor interface: a QM/MM study questions standard experimental approximations. Phys Chem Chem Phys 2021; 23:24932-24941. [PMID: 34726679 DOI: 10.1039/d1cp02258j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface Second-Harmonic Generation (S-SHG) experiments provide a unique approach to probe interfaces. One important issue for S-SHG is how to interpret the S-SHG intensities at the molecular level. Established frameworks commonly assume that each molecule emits light according to an average molecular hyperpolarizability tensor β(-2ω,ω,ω). However, for water molecules, this first hyperpolarizability is known to be extremely sensitive to their environment. We have investigated the molecular first hyperpolarizability of water molecules within the liquid-vapor interface, using a quantum description with explicit, inhomogeneous electrostatic embedding. The resulting average molecular first hyperpolarizability tensor depends on the distance relative to the interface, and it practically respects the Kleinman symmetry everywhere in the liquid. Within this numerical approach, based on the dipolar approximation, the water layer contributing to the Surface Second Harmonic Generation (S-SHG) intensity is less than a nanometer. The results reported here question standard interpretations based on a single, averaged hyperpolarizability for all molecules at the interface. Not only the molecular first hyperpolarizability tensor significantly depends on the distance relative to the interface, but it is also correlated to the molecular orientation. Such hyperpolarizability fluctuations may impact the S-SHG intensity emitted by an aqueous interface.
Collapse
Affiliation(s)
- Guillaume Le Breton
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Oriane Bonhomme
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Pierre-François Brevet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Emmanuel Benichou
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Claire Loison
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| |
Collapse
|
6
|
Licari G, Strakova K, Matile S, Tajkhorshid E. Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chem Sci 2020; 11:5637-5649. [PMID: 32864081 PMCID: PMC7433777 DOI: 10.1039/d0sc02175j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
Lateral forces in biological membranes affect a variety of dynamic cellular processes. Recent synthetic efforts have introduced fluorescent "flippers" as environment-sensitive planarizable push-pull probes that can detect lipid packing and membrane tension, and respond to lipid-induced mechanical forces by a shift in their spectroscopic properties. Herein, we investigate the molecular origin of the mechanosensitivity of the best known flipper, Flipper-TR, by an extended set of molecular dynamics (MD) simulations in membranes of increasing complexity and under different physicochemical conditions, revealing unprecedented details of the sensing process. Simulations enabled by accurate refinement of Flipper-TR force field using quantum mechanical calculations allowed us to unambiguously correlate the planarization of the two fluorescent flippers to spectroscopic response. In particular, Flipper-TR conformation exhibits bimodal distribution in disordered membranes and a unimodal distribution in highly ordered membranes. Such dramatic change was associated with a shift in Flipper-TR excitation spectra, as supported both by our simulated and experimentally-measured spectra. Flipper-TR sensitivity to phase-transition is confirmed by a temperature-jump protocol that alters the lipid phase of an ordered membrane, triggering an instantaneous mechanical twisting of the probe. Simulations show that the probe is also sensitive to surface tension, since even in a naturally disordered membrane, the unimodal distribution of coplanar flippers can be achieved if a sufficiently negative surface tension is applied to the membrane. MD simulations in ternary mixtures containing raft-like nanodomains show that the probe can discriminate lipid domains in phase-separated complex bilayers. A histogram-based approach, called DOB-phase classification, is introduced that can differentiate regions of disordered and ordered lipid phases by comparing dihedral distributions of Flipper-TR. Moreover, a new sensing mechanism involving the orientation of Flipper-TR is elucidated, corroborating experimental evidence that the probe tilt angle is strongly dependent on lipid ordering. The obtained atomic-resolution description of Flipper-TR mechanosensitivity is key to the interpretation of experimental data and to the design of novel mechanosensors with improved spectroscopic properties.
Collapse
Affiliation(s)
- Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics , Beckman Institute for Advanced Science and Technology , Department of Biochemistry , Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA . ; Tel: +1-217-244-6914
| | - Karolina Strakova
- School of Chemistry and Biochemistry , National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry , National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , Geneva , Switzerland
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics , Beckman Institute for Advanced Science and Technology , Department of Biochemistry , Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA . ; Tel: +1-217-244-6914
| |
Collapse
|
7
|
Gschwend GC, Kazmierczak M, Olaya AJ, Brevet PF, Girault HH. Two dimensional diffusion-controlled triplet-triplet annihilation kinetics. Chem Sci 2019; 10:7633-7640. [PMID: 31588315 PMCID: PMC6761882 DOI: 10.1039/c9sc00957d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023] Open
Abstract
Diffusion controlled chemical reactions are usually observed in three dimensional media. In contrast, planar bimolecular reactions taking place between reagents adsorbed at a soft interface are two-dimensional and therefore cannot be studied within the same formalism. Indeed, soft interfaces allow the adsorbed species to freely diffuse in a liquid-like manner. Here, we present the first experimental observation of a diffusion-controlled reaction in an environment that is planar at the ångström scale. By means of time-resolved surface second harmonic generation, an inherently surface sensitive technique, we observed that the kinetics of the diffusion of the reagents in the plane decreases as the surface concentration of adsorbed species increases. This is of course not the case for bulk reactions where the rates always increase with the reactant concentration. Such changes in the kinetics regime were rationalised as the evolution from a regular 2D free diffusion regime to a geometry-controlled scheme.
Collapse
Affiliation(s)
- Grégoire C Gschwend
- Laboratoire d'Électrochimie Physique et Analytique , École Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| | - Morgan Kazmierczak
- Laboratoire d'Électrochimie Physique et Analytique , École Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
- École Normale Supérieure , Département de Chimie , PSL Research University , 75005 , Paris , France
| | - Astrid J Olaya
- Laboratoire d'Électrochimie Physique et Analytique , École Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| | - Pierre-François Brevet
- Institut Lumière Matière , UMR CNRS 5306 , Université Claude Bernard Lyon 1 , Campus LyonTech La Doua , 10 Rue Ada Byron , 69622 Villeurbanne Cedex , France
| | - Hubert H Girault
- Laboratoire d'Électrochimie Physique et Analytique , École Polytechnique Fédérale de Lausanne , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland .
| |
Collapse
|