1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Theoretical Evaluation of Sulfur-Based Reactions as a Model for Biological Antioxidant Defense. Int J Mol Sci 2022; 23:ijms232314515. [PMID: 36498842 PMCID: PMC9741100 DOI: 10.3390/ijms232314515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Sulfur-containing amino acids, Methionine (Met) and Cysteine (Cys), are very susceptible to Reactive Oxygen Species (ROS). Therefore, sulfur-based reactions regulate many biological processes, playing a key role in maintaining cellular redox homeostasis and modulating intracellular signaling cascades. In oxidative conditions, Met acts as a ROS scavenger, through Met sulfoxide formation, while thiol/disulfide interchange reactions take place between Cys residues as a response to many environmental stimuli. In this work, we apply a QM/MM theoretical-computational approach, which combines quantum-mechanical calculations with classical molecular dynamics simulations to estimate the free energy profile for the above-mentioned reactions in solution. The results obtained, in good agreement with experimental data, show the validity of our approach in modeling sulfur-based reactions, enabling us to study these mechanisms in more complex biological systems.
Collapse
|
3
|
Ghilardi AF, Yaaghubi E, Ferreira RB, Law ME, Yang Y, Davis BJ, Schilson CM, Ghiviriga I, Roitberg AE, Law BK, Castellano RK. Anticancer Agents Derived from Cyclic Thiosulfonates: Structure-Reactivity and Structure-Activity Relationships. ChemMedChem 2022; 17:e202200165. [PMID: 35491396 PMCID: PMC9308679 DOI: 10.1002/cmdc.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Indexed: 11/09/2022]
Abstract
Reported are structure-property-function relationships associated with a class of cyclic thiosulfonate molecules-disulfide-bond disrupting agents (DDAs)-with the ability to downregulate the Epidermal Growth Factor Receptor (HER) family in parallel and selectively induce apoptosis of EGFR+ or HER2+ breast cancer cells. Recent findings have revealed that the DDA mechanism of action involves covalent binding to the thiol(ate) from the active site cysteine residue of members of the protein disulfide isomerase (PDI) family. Reported is how structural modifications to the pharmacophore can alter the anticancer activity of cyclic thiosulfonates by tuning the dynamics of thiol-thiosulfonate exchange reactions, and the studies reveal a correlation between the biological potency and thiol-reactivity. Specificity of the cyclic thiosulfonate ring-opening reaction by a nucleophilic attack can be modulated by substituent addition to a parent scaffold. Lead compound optimization efforts are also reported, and have resulted in a considerable decrease of the IC50 /IC90 values toward HER-family overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Yinuo Yang
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | |
Collapse
|
4
|
Nair AG, Perumalla DS, Anjukandi P. Disulfide Isomerization in nDsbD‐DsbC Complex ‐ Exploring an Internal Nucleophile Mediated Reaction Pathway. Chemphyschem 2022; 23:e202200320. [DOI: 10.1002/cphc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Aparna G Nair
- IIT Palakkad: Indian Institute of Technology Palakkad Chemistry INDIA
| | | | - Padmesh Anjukandi
- Indian Institute of Technology Palakkad Chemistry Ahalia Integrated CampusKozhippara P. O 678557 Palakkad INDIA
| |
Collapse
|
5
|
Nair AG, Perumalla DS, Anjukandi P. Towards solvent regulated self-activation of N-terminal disulfide bond oxidoreductase-D. Phys Chem Chem Phys 2022; 24:7691-7699. [PMID: 35311864 DOI: 10.1039/d1cp05819c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-terminal disulfide bond oxidoreductase-D (nDsbD), an essential redox enzyme in Gram-negative bacteria, consists of a single disulfide bond (Cys103-Cys109) in its active site. The enzymatic functions are believed to be regulated by an electron transfer mediated redox switching of the disulfide bond, which is vital in controlling bacterial virulence factors. In light of the disulfide bond's inclination towards nucleophilic cleavage, it is also plausible that an internal nucleophile could second the existing electron transfer mechanism in nDsbD. Using QM/MM MD metadynamics simulations, we explore different possibilities of generating an internal nucleophile near the nDsbD active site, which could serve as a fail-over mechanism in cleaving the disulfide bond. The simulations show the formation of the internal nucleophile Tyr42O- (F ≈ 9 kcal mol-1) and its stabilization through the solvent medium. The static gas-phase calculations show that Tyr42O- could be a potential nucleophile for cleaving the S-S bond. Most strikingly, it is also seen that Tyr42O- and Asp68OH communicate with each other through a proton-hole like water wire (F ≈ 12 kcal mol-1), thus modulating the nucleophile formation. Accordingly, we propose the role of a solvent in regulating the internal nucleophilic reactions and the subsequent self-activation of nDsbD. We believe that this could be deterministic while designing enzyme-targeted inhibitor compounds.
Collapse
Affiliation(s)
- Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| | | | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| |
Collapse
|
6
|
Kowalska M, Bąchor R. Catch, Modify and Analyze: Methods of Chemoselective Modification of Cysteine-Containing Peptides. Molecules 2022; 27:molecules27051601. [PMID: 35268701 PMCID: PMC8911932 DOI: 10.3390/molecules27051601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
One effective solution in the analysis of complex mixtures, including protein or cell hydrolysates, is based on chemoselective derivatization of a selected group of compounds by using selective tags to facilitate detection. Another method is based on the capture of the desired compounds by properly designed solid supports, resulting in sample enrichment. Cysteine is one of the rarest amino acids, but at least one cysteine residue is present in more than 91% of human proteins, which clearly confirms its important role in biological systems. Some cysteine-containing peptides may serve as significant molecular biomarkers, which may emerge as key indices in the management of patients with particular diseases. In the current review, we describe recent advances in the development of cysteine-containing peptide modification techniques based on solution and solid phase derivatization and enrichment strategies.
Collapse
|
7
|
Gómez-Flores CL, Maag D, Kansari M, Vuong VQ, Irle S, Gräter F, Kubař T, Elstner M. Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. J Chem Theory Comput 2022; 18:1213-1226. [PMID: 34978438 DOI: 10.1021/acs.jctc.1c00811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semiempirical methods like density functional tight-binding (DFTB) allow extensive phase space sampling, making it possible to generate free energy surfaces of complex reactions in condensed-phase environments. Such a high efficiency often comes at the cost of reduced accuracy, which may be improved by developing a specific reaction parametrization (SRP) for the particular molecular system. Thiol-disulfide exchange is a nucleophilic substitution reaction that occurs in a large class of proteins. Its proper description requires a high-level ab initio method, while DFT-GAA and hybrid functionals were shown to be inadequate, and so is DFTB due to its DFT-GGA descent. We develop an SRP for thiol-disulfide exchange based on an artificial neural network (ANN) implementation in the DFTB+ software and compare its performance to that of a standard SRP approach applied to DFTB. As an application, we use both new DFTB-SRP as components of a QM/MM scheme to investigate thiol-disulfide exchange in two molecular complexes: a solvated model system and a blood protein. Demonstrating the strengths of the methodology, highly accurate free energy surfaces are generated at a low cost, as the augmentation of DFTB with an ANN only adds a small computational overhead.
Collapse
Affiliation(s)
- Claudia L Gómez-Flores
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Denis Maag
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Mayukh Kansari
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephan Irle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.,National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, United States
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Maag D, Putzu M, Gómez-Flores CL, Gräter F, Elstner M, Kubař T. Electrostatic interactions contribute to the control of intramolecular thiol-disulfide isomerization in a protein. Phys Chem Chem Phys 2021; 23:26366-26375. [PMID: 34792054 DOI: 10.1039/d1cp03129e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of structural factors and of electrostatic interactions with the environment on the outcome of thiol-disulfide exchange reactions were investigated in a mutated immunoglobulin domain (I27*) under mechanical stress. An extensive ensemble of molecular dynamics trajectories was generated by means of QM/MM simulations for a total sampling of 5.7 μs. A significant number of thiol-disulfide exchanges were observed, and the Cys32 thiolate preferred to attack Cys55 over Cys24, in agreement with previous experimental and computational studies. The structural features as well as electronic structures of the thiol-disulfide system along the reaction were analyzed, as were the electrostatic interactions with the environment. The previous findings of better accessibility of Cys55 were confirmed. Additionally, the reaction was found to be directed by the electrostatic interactions of the involved sulfur atoms with the molecular environment. The relationships of atomic charges, which stem from the electrostatic interactions, lead to the kinetic preference of the attack on Cys55. Further, QM/MM metadynamics simulations of thiol-disulfide exchange in a small model system with varied artificial external electric potentials revealed changes in reaction kinetics of the same magnitude as in I27*. Therefore, the electrostatic interactions are confirmed to play a role in the regioselectivity of the thiol-disulfide exchange reactions in the protein.
Collapse
Affiliation(s)
- Denis Maag
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Marina Putzu
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Claudia L Gómez-Flores
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany. .,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| |
Collapse
|
9
|
Wu Z, Pratt DA. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew Chem Int Ed Engl 2021; 60:15598-15605. [PMID: 33929774 DOI: 10.1002/anie.202104595] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of carboxylic acids into disulfides is described. The approach employs oxidative photocatalysis for base-promoted decarboxylation of the substrate, which yields an alkyl radical that reacts with a trisulfide dioxide through homolytic substitution. The trisulfide dioxides are easily prepared by a newly described approach. 1°, 2°, and 3° carboxylic acids with varied substitution are good substrates, including amino acids and substrates with highly activated C-H bonds. Trisulfide dioxides are also used to achieve the γ-C(sp3 )-H disulfuration of amides through a radical relay sequence. In both reactions, the sulfonyl radical that results from substitution propagates the reaction. Factors governing the selectivity of substitution at S2 versus S3 of the trisulfide dioxides have been explored.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
10
|
Wu Z, Pratt DA. A Divergent Strategy for Site‐Selective Radical Disulfuration of Carboxylic Acids with Trisulfide‐1,1‐Dioxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
11
|
Verdugo P, Lligadas G, Ronda JC, Galià M, Cádiz V. Bio-based ABA triblock copolymers with central degradable moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Jayasree EG, Sukumar C. A DFT study on the cleavage of dichalcogenide bridges in cystines and selenocystines: Effect of hydrogen bonding. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
Radical substitution on tetrasulfides is demonstrated to be a highly effective means to prepare unsymmetric disulfides. Alkyl and aryl radicals generated thermally or photochemically underwent substitution on readily prepared dialkyl, diaryl, and diacyl tetrasulfides to yield the corresponding disulfides in good to excellent yields. Classic and contemporary thermal and photochemical radical sources could be employed; while photoredox catalysis approaches led to either oxidation or reduction of the tetrasulfide, energy transfer photocatalysis was particularly useful. The success of the approach is driven by the thermodynamic stability of the perthiyl radicals formed upon substitution on the tetrasulfide; they simply combine under the reaction conditions to provide the starting tetrasulfide. Competition kinetic experiments reveal that alkyl radical substitution on tetrasulfides is a rapid reaction (6 × 105 M-1 s-1) that is enhanced at least 6-fold upon moving from dialkyl tetrasulfide to diacyl tetrasulfide due to favorable polar effects. This unique and versatile reaction enables introduction of disulfide moieties from a variety of radical precursors and straightforward access to hydropersulfides.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
14
|
Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants. Biochem J 2020; 477:1865-1878. [DOI: 10.1042/bcj20190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
The antagonism between thiol oxidation and reduction enables efficient control of protein function and is used as central mechanism in cellular regulation. The best-studied mechanism is the dithiol-disulfide transition in the Calvin Benson Cycle in photosynthesis, including mixed disulfide formation by glutathionylation. The adjustment of the proper thiol redox state is a fundamental property of all cellular compartments. The glutathione redox potential of the cytosol, stroma, matrix and nucleoplasm usually ranges between −300 and −320 mV. Thiol reduction proceeds by short electron transfer cascades consisting of redox input elements and redox transmitters such as thioredoxins. Thiol oxidation ultimately is linked to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Enhanced ROS production under stress shifts the redox network to more positive redox potentials. ROS do not react randomly but primarily with few specific redox sensors in the cell. The most commonly encountered reaction within the redox regulatory network however is the disulfide swapping. The thiol oxidation dynamics also involves transnitrosylation. This review compiles present knowledge on this network and its central role in sensing environmental cues with focus on chloroplast metabolism.
Collapse
|
15
|
Puszko AK, Sosnowski P, Raynaud F, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Does Cysteine Rule (CysR) Complete the CendR Principle? Increase in Affinity of Peptide Ligands for NRP-1 Through the Presence of N-Terminal Cysteine. Biomolecules 2020; 10:biom10030448. [PMID: 32183142 PMCID: PMC7175122 DOI: 10.3390/biom10030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
The structure-activity relationship of branched H-Lys(hArg)-Dab-Dhp-Arg-OH sequence analogues, modified with Cys-Asp or Cys at N-terminal amino acids (Lys, hArg), in VEGF-A165/Neuropilin-1 complex inhibition is presented. The addition of Cys residue led to a 100-fold decrease in the IC50 value, compared to the parent peptide. The change occurred regardless of coupling Cys to the free N-terminal amino group present in the main or the side chain. A few analogues extended by the attachment of Cys at the N-terminus of several potent NRP-1 peptide ligands documented in the literature are also presented. In all studied cases, the enhancement of inhibitory properties after the addition of Cys at the N-terminus is observed. It is particularly evident for the tetrapeptide derived from the C-terminus of VEGF-A165 (KPRR), suggesting that extending the K/RXXK/R motif (CendR) with the Cys moiety can significantly improve affinity to NRP-1 of CendR peptides.
Collapse
Affiliation(s)
- Anna K. Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 4 Geneva, Switzerland; (P.S.); (G.H.)
| | - Françoise Raynaud
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
| | - Olivier Hermine
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 4 Geneva, Switzerland; (P.S.); (G.H.)
| | - Yves Lepelletier
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (F.R.); (O.H.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
- CNRS ERL 8254, 24 boulevard Montparnasse, 75015 Paris, France
- Correspondence: (Y.L.); (A.M.); Tel.: +33-14275-4283 (Y.L.); +48-22-552-6424 (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
- Correspondence: (Y.L.); (A.M.); Tel.: +33-14275-4283 (Y.L.); +48-22-552-6424 (A.M.)
| |
Collapse
|
16
|
Sousa SF, Neves RP, Waheed SO, Fernandes PA, Ramos MJ. Structural and mechanistic aspects of S-S bonds in the thioredoxin-like family of proteins. Biol Chem 2018; 400:575-587. [DOI: 10.1515/hsz-2018-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Disulfide bonds play a critical role in a variety of structural and mechanistic processes associated with proteins inside the cells and in the extracellular environment. The thioredoxin family of proteins like thioredoxin (Trx), glutaredoxin (Grx) and protein disulfide isomerase, are involved in the formation, transfer or isomerization of disulfide bonds through a characteristic thiol-disulfide exchange reaction. Here, we review the structural and mechanistic determinants behind the thiol-disulfide exchange reactions for the different enzyme types within this family, rationalizing the known experimental data in light of the results from computational studies. The analysis sheds new atomic-level insight into the structural and mechanistic variations that characterize the different enzymes in the family, helping to explain the associated functional diversity. Furthermore, we review here a pattern of stabilization/destabilization of the conserved active-site cysteine residues presented beforehand, which is fully consistent with the observed roles played by the thioredoxin family of enzymes.
Collapse
Affiliation(s)
- Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Rui P.P. Neves
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Sodiq O. Waheed
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| |
Collapse
|