1
|
Wu X, Wang L, Qin Y, Gao Y, Yang M, Cao P, Liu K. Prediction of binding affinity and enthalpy of CB7 with alkaloids by attach-pull-release molecular dynamics simulations study. J Mol Graph Model 2024; 131:108810. [PMID: 38852429 DOI: 10.1016/j.jmgm.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Host-guest complex has attracted much attention because of their fantastic capability. Accurate prediction of their binding affinity and enthalpy is essential to the rational design of guest molecules. The attach-pull-release (APR) method proposed by Henriksen et al. (J. Chem. Theory Comput., 2015, 11:4377.) shows good prediction capability of binding affinity especially for host-guest system. In order to further evaluate the performance of APR method in practice, we have conducted the calculations on the macrocycle cucurbit [7]urils (CB7) encapsulated with four structurally similar alkaloids (berberine, coptisine, epiberberine and palmatine) with two force fields (GAFF and GAFF2) and three water models (TIP3P, SPC/E and OPC). Compared to the experimental data, the calculation by the combination of GAFF2 and SPC/E force field presents the best performance, of which the Pearson correlation coefficients (R2) is 0.95, and the root-mean-square-deviation is 3.04 kcal/mol. While the predictions from GAFF force field all overestimated the binding affinity, suggesting a systematic error may be involved. Comparison of calculation also indicates that the accuracy of prediction was susceptible to the combination of force field. Therefore, it would be necessary to repeat the simulation with different combination of force fields in practice.
Collapse
Affiliation(s)
- Xiru Wu
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Lingzhi Wang
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Yuan Qin
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Yalei Gao
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Min Yang
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Pei Cao
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Kai Liu
- Guangxi Key Laboratory of Marine Drugs/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
2
|
Kumar NM, Gruhs P, Casini A, Biedermann F, Moreno-Alcántar G, Picchetti P. Electrochemical Detection of Drugs via a Supramolecular Cucurbit[7]uril-Based Indicator Displacement Assay. ACS Sens 2023. [PMID: 37339775 PMCID: PMC10391622 DOI: 10.1021/acssensors.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.
Collapse
Affiliation(s)
- Nilima Manoj Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Gruhs
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Guillermo Moreno-Alcántar
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Li L, Luo WC, Jiang M, Yu X, Xu L. Turn-on fluorescence probing of amyloid fibrils by the proto-berberine alkaloids and the study of their interactions. Int J Biol Macromol 2023; 231:123319. [PMID: 36682666 DOI: 10.1016/j.ijbiomac.2023.123319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/05/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The aggregation of amyloid proteins is highly related to the occurrence and development of neurodegenerative and metabolic diseases. The detection of amyloid fibrils or monitoring fibrillation process would be necessary to understand the fundamental knowledge about the diseases and further facilitate the research for the drug discovery and disease treatment. In this study, three proto-berberine alkaloids, i.e. berberine, palmatine and coptisine, were examined as three distinctive fluorescent probes to detect amyloid fibrils. These three alkaloids were found to be sensitive to the microenvironment, i.e. viscosity and polarity, with varied fluorescence intensity. They could sensitively probe insulin and lysozyme fibrils with turn-on fluorescence, but did not respond to protein monomers, merited with advantages of larger Stokes shift, greenish-yellow fluorescence and no interference with the fibrillation process. Hydrophobic, electrostatic and hydrogen bond interactions were explored to exist between alkaloids and the fibrils. Moreover, these alkaloids succeeded in monitoring the aggregation process of amyloid proteins in vitro and imaging the fibrils in living cells. The present study demonstrates that the three alkaloids could be the potential candidate fluorescent probes for amyloid fibrils.
Collapse
Affiliation(s)
- Li Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan-Chun Luo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Miskolczy Z, Megyesi M, Biczók L. Entropy-Driven Inclusion of Natural Protoberberine Alkaloids in Sulfobutylether-β-Cyclodextrin. Molecules 2022; 27:7514. [PMID: 36364339 PMCID: PMC9657192 DOI: 10.3390/molecules27217514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of the relationship between molecular structure and the thermodynamics of host-guest binding is essential for the rational design of the applications of inclusion complexes. To obtain insight into the factors governing the driving force of complex formation in aqueous solutions, the encapsulation of five pharmaceutically important protoberberine alkaloids was studied in sulfobutylether-β-cyclodextrin having on average 6.4 degrees of substitution (SBE6.4βCD). Spectrophotometric, fluorescence spectroscopic, and isothermal calorimetric measurements showed 1:1 complexation in dilute solutions. From 1.92 × 104 M−1, about an eight-fold decrease of the association constant was observed in the series of berberine ≈ coptisine >> palmatine > epiberberine > dehydrocorydaline. The embedment of these alkaloids in the SBE6.4βCD cavity was entropy-controlled with mildly negative enthalpy contributions. These findings suggest that the stabilization of the examined complexes arises primarily from the hydrophobic interaction between the constituents. The more than three orders of magnitude smaller association constants of protoberberine alkaloids with SBE6.4βCD than with cucurbit[7]uril, a host having similar cavity size, originates from the much smaller exothermicity of the confinement in the former macrocycle.
Collapse
Affiliation(s)
| | | | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|
5
|
Miskolczy Z, Megyesi M, Biczók L. Role of kinetic stabilization in the inclusion of the pharmaceutically important chelerythrine and nitidine alkaloids in cucurbit[7]uril. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kumar NM, Picchetti P, Hu C, Grimm LM, Biedermann F. Chemiluminescent Cucurbit[ n]uril-Based Chemosensor for the Detection of Drugs in Biofluids. ACS Sens 2022; 7:2312-2319. [PMID: 35895991 DOI: 10.1021/acssensors.2c00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemiluminescence-based detection methods offer a superior signal-to-noise ratio and are commonly adopted for biosensors. This work presents the design and implementation of a supramolecular assay based on a chemiluminescent chemosensor. Specifically, an indicator displacement assay (IDA) with the supramolecular host-guest complex of chemiluminescent phenoxy 1,2-dioxetane and cucurbit[8]uril enables the low-micromolar detection of drugs in human urine and human serum samples. Cucurbit[8]uril thereby acts as a non-surfactant chemiluminescence enhancer and a synthetic receptor. Additionally, we show that adding an equimolar amount of cucurbit[8]uril to a commercially available dioxetane used in standard enzymatic chemiluminescence immunoassays enhances the chemiluminescence by more than 15 times. Finally, we demonstrate that a chemiluminescence resonance energy transfer between a unimolecular macrocyclic cucurbit[7]uril-dye conjugate and a phenoxy 1,2-dioxetane can be utilized to detect the herbicide paraquat at a micromolar concentration in aqueous media.
Collapse
Affiliation(s)
- Nilima Manoj Kumar
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Changming Hu
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M Grimm
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Miskolczy Z, Megyesi M, Sinn S, Biedermann F, Biczók L. Simultaneous analyte indicator binding assay (SBA) for the monitoring of reversible host-guest complexation kinetics. Chem Commun (Camb) 2021; 57:12663-12666. [PMID: 34775505 DOI: 10.1039/d1cc04888k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Very little information is available on the kinetics of the self-assembly and dissociation of optically silent building blocks despite the importance of such data in the rational design of tailor-made host-guest systems. We introduce here a novel time-resolved method that enables the simultaneous determination of complex formation and complex dissociation rate constants for inclusion-type host-guest complexes. The simultaneous analyte indicator binding assay (SBA) gives also direct access to binding affinities, thus largely simplifying the experimental procedure for a full kinetic and thermodynamic characterisation of host-guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| | - Mónika Megyesi
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - László Biczók
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| |
Collapse
|
8
|
Miskolczy Z, Megyesi M, Lendvay G, Biczók L. Self-assembly of quaternary benzo[c]phenanthridine plant alkaloids into dimer in aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Whitaker DJ, Huang Z, Longbottom BW, Sala RL, Wu G, Scherman OA. Supramolecular hydrogels prepared from fluorescent alkyl pyridinium acrylamide monomers and CB[8]. Polym Chem 2021. [DOI: 10.1039/d0py01374a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthetic methodology unlocks alkyl pyridinium acrylamide monomers for use in the construction of cucurbit[8]uril mediated dynamic, fluorescent hydrogels.
Collapse
Affiliation(s)
- Daniel J. Whitaker
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Zehuan Huang
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Brooke W. Longbottom
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Renata L. Sala
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
10
|
Shan PH, Kan JL, Deng XY, Redshaw C, Bian B, Fan Y, Tao Z, Xiao X. A fluorescent probe based on cucurbit[7]uril for the selective recognition of phenylalanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118177. [PMID: 32151986 DOI: 10.1016/j.saa.2020.118177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Herein we describe a simple fluorescence quenching method for the selective recognition and determination of the amino acid phenylalanine (Phe). The use of 1H NMR spectroscopy revealed that the alkaloid palmatine (PAL) can encapsulated partially into the cavity of cucurbit[7]uril (Q[7]) in aqueous solution to form a stable 1:1 host-guest inclusion complex. This host-guest complex exhibits fluorescence of moderate intensity. Interestingly, the addition of the Phe results in a dramatic quenching of the fluorescence intensity associated with the inclusion complex. By contrast, the addition of other natural amino acids resulted in no change in the fluorescence. Based on the linear relationship between the fluorescence intensity and the concentration of Phe, the detection of the concentration of Phe in aqueous solution is facile. Thus, a new fluorescence quenching method for the recognition and determination of the Phe has established herein.
Collapse
Affiliation(s)
- Pei-Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Miskolczy Z, Megyesi M, Biczók L, Prabodh A, Biedermann F. Kinetics and Mechanism of Cation-Induced Guest Release from Cucurbit[7]uril. Chemistry 2020; 26:7433-7441. [PMID: 31943402 PMCID: PMC7318709 DOI: 10.1002/chem.201905633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 12/11/2022]
Abstract
The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped‐flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7‐dimethyldiazapyrenium shows a cation‐independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+) due to competitive formation of CB7–Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non‐symmetric berberine (B+). The formation of ternary complex B+–CB7–Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+–CB7 inclusion complex. Large cations, such as K+ and Ba2+, also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Anis-Ul-Haque KM, Woodward CE, Day AI, Wallace L. Interaction of the Large Host Q[10] with Metal Polypyridyl Complexes: Binding Modes and Effects on Luminescence. Inorg Chem 2020; 59:3942-3953. [PMID: 32125142 DOI: 10.1021/acs.inorgchem.9b03603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aqueous solution state host-guest systems have been studied, comprising the large host cucurbit[10]uril with luminescent cationic tris(polypyridyl) (PP) metal complexes [Ru(PP)3]2+ and [Ir(PP)3]3+. All complexes bind strongly with the host, with the overall complex charge and size having a minor effect on affinity but influencing the association dynamics and contribution from higher-order (1:2) host-guest species. The 1:2 species contributes more significantly to the binding equilibrium in the case of [Ru(phen)3]2+. The effect of the host upon emission is highly variable and depends on the electronic structure of the guest. The metal-to-ligand charge transfer (MLCT) emission of [Ru(PP)3]2+ is strongly quenched, in contrast to the large enhancements seen previously for MLCT emission of iridium cyclometalated complexes, while the ligand-centered emission of [Ir(PP)3]3+ is little affected. The mechanisms of quenching and enhancement are discussed, together with the implications for the design of larger supramolecular assemblies based on these archetypal emitters.
Collapse
Affiliation(s)
- K M Anis-Ul-Haque
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Clifford E Woodward
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Anthony I Day
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| | - Lynne Wallace
- School of Science, The University of New South Wales, Canberra, ACT 2600, Australia
| |
Collapse
|
13
|
Spectroscopic and calorimetric studies of interactions between mitoxantrone and cucurbituril Q7 in aqueous solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Miskolczy Z, Megyesi M, Toke O, Biczók L. Change of the kinetics of inclusion in cucurbit[7]uril upon hydrogenation and methylation of palmatine. Phys Chem Chem Phys 2019; 21:4912-4919. [DOI: 10.1039/c8cp07231k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The negative activation entropy of tetrahydropalmatine inclusion makes the entry into cucurbit[7]uril significantly slower than in the case of dehydrocorydaline.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1519 Budapest
- Hungary
| |
Collapse
|
15
|
Liu YC, Nau WM, Hennig A. A supramolecular five-component relay switch that exposes the mechanistic competition of dissociative versus associative binding to cucurbiturils by ratiometric fluorescence monitoring. Chem Commun (Camb) 2019; 55:14123-14126. [DOI: 10.1039/c9cc07165b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A putrescine derivative of aminomethyladamantane is established as a ditopic guest with two mutually exclusive binding sites for cucurbit[6]uril and cucurbit[7]uril.
Collapse
Affiliation(s)
- Yan-Cen Liu
- Department of Life Sciences and Chemistry
- Jacobs University Bremen gGmbH
- 28759 Bremen
- Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry
- Jacobs University Bremen gGmbH
- 28759 Bremen
- Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry
- Jacobs University Bremen gGmbH
- 28759 Bremen
- Germany
| |
Collapse
|
16
|
Zhou Y, Gao L, Tong X, Li Q, Fei Y, Yu Y, Ye T, Zhou XS, Shao Y. Supramolecularly Multicolor DNA Decoding Using an Indicator Competition Assay. Anal Chem 2018; 90:13183-13187. [PMID: 30345742 DOI: 10.1021/acs.analchem.8b04070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Relative to the individual intensity-dependent strategy, the multicolor fluorescence sensor has promise to achieve a high signaling contrast. In this work, we develop a cucurbituril-based supramolecular and multicolor DNA recognition rationale via indicator competition assay (ICA). Alkaloids of coptisine (COP) and palmatine (PAL) are identified as the proof-of-principle indicators with a lighting-up fluorescence upon supramolecular complexation to cucurbit[7]uril (CB[7]). With an introduced abasic site (AP site) as the contestant, DNAs having pyrimidines opposite this site can compete for COP with CB[7] to bring an emission color change from green to yellow brown, while those having purines opposite the AP site do not compete for COP and still have the green emission, indicative of a high selectivity for the multicolor nucleotide transversion recognition. However, because of the relatively weaker binding of PAL with CB[7], the AP site-containing DNA can take away PAL from its CB[7] complex and resultantly bring a blue-to-green emission color change independent of the AP site-opposite nucleotide identity, dissimilar to the remaining blue color for the fully matched DNA without the AP site, suggesting a preferable strategy for the AP site biomarker detection. Our method demonstrates a new way to develop an ICA-based multicolor DNA sensor with the supramolecular cucurbituril complexation to ensure a highly selective performance.
Collapse
Affiliation(s)
- Yufeng Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Xingyu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Qiusha Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , China
| |
Collapse
|