1
|
Li Y, Lakey PSJ, Ezell MJ, Johnson KN, Shiraiwa M, Finlayson-Pitts BJ. Distinct Temperature Trends in the Uptake of Gaseous n-Butylamine on Two Solid Diacids. ACS ES&T AIR 2024; 1:52-61. [PMID: 39166528 PMCID: PMC10798143 DOI: 10.1021/acsestair.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 08/23/2024]
Abstract
Uptake coefficients of n-butylamine (BA) on solid succinic (SA) and glutaric acids (GA) from 298 to 177 K were measured using a newly combined Knudsen cell temperature-programmed desorption apparatus. The uptake coefficients on SA increase monotonically from (1.9 ± 0.5) × 10-4 at 298 K to 0.14 ± 0.05 at 177 K (errors represent 2σ statistical errors, overall errors are estimated to be ±60%). This is consistent with a surface reaction mechanism to form solid aminium carboxylate. In contrast, the uptake coefficients on GA increase from 0.11 ± 0.04 at 298 K to 0.25 ± 0.04 at 248 K but then decrease to 0.030 ± 0.010 at 177 K. This unusual trend in temperature dependence of the uptake coefficient is due to formation of an ionic liquid (IL) layer upon the surface reaction of BA with GA, leading to a competition between the rate of desorption of BA and the rates of diffusion and reaction within the IL. Overall, the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) satisfactorily reproduces these unique trends. This work provides mechanistic insight and predictive capability for the temperature-dependence of reactive uptake processes involving multiple phase changes upon surface reaction.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Michael J. Ezell
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Kristen N. Johnson
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University
of California, Irvine, Irvine, California 92697-2025, United States
| | | |
Collapse
|
2
|
Hołaj-Krzak JT, Rekik N, Alsaif NAM, Lakshminarayana G. Elucidating the Infrared Spectral Properties of Succinic Molecular Acid Crystals: Illustration of the Structure and the Hydrogen Bond Energies of the Crystal and Its Deuterated Analogs. J Phys Chem A 2022; 126:5604-5620. [PMID: 35960542 DOI: 10.1021/acs.jpca.2c04440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the infrared spectroscopic properties of molecular succinic acid crystals (SA) and their four isotopic analogs [C2H4(COOH)2, h6-SA; C2H4(COOD)2, d2-SA; C2D4(COOH)2, d4-SA; C2D4(COOD)2, d6-SA] are reported. The correlation between the structure of succinic acid molecules and their corresponding hydrogen bond energies is elucidated. The effects related to the isotopic dilution as well as the changes in the spectrum recording temperature on the fine structures of the vO-H and vO-D bands are interpreted. The infrared spectral anomalies detected in the spectra of isotopically neat succinic nanocrystal acids are confirmed by theoretical calculations using density functional theory (DFT). According to previous spectroscopic studies of succinic acid and those carried out for α,ω-dicarboxylic acids, a decent agreement between the experimental results and the theoretical DFT simulations is obtained. Moreover, the spectra of single crystals of the h6 and d4 succinic acid variants prove that the vibrational coupling mechanism between the (COOH)2 cycles is rigorously convergent to that detected in the spectra of aromatic carboxylic acids, suggesting thereby that the promotion of symmetry-forbidden high stretching IR transitions plays a crucial role. Furthermore, the obtained experimental results reveal that the succinic acid shows a spectral behavior significantly different from that characteristic of hydrogen associations of other acids of homologous series, such as the glutaric, adipic, malonic, and pimelic acid crystals. The results obtained herein shed light on the way to explore the revealed structure of isotopic derivatives of succinic acid crystals and may prove to be useful results for understanding the nature of unconventional interactions as well as the macroscopic energy effects directing the development of hydrogen associations.
Collapse
Affiliation(s)
- Jakub T Hołaj-Krzak
- Institute of Technology and Life Sciences - National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Najeh Rekik
- Physics Department, College of Science, University of Ha'il, Ha'il 55476, Saudi Arabia.,Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Norah A M Alsaif
- Physics Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - G Lakshminarayana
- Intelligent Construction Automation Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
3
|
Enes da Silva MJ, Banerjee A, Lefferts L, Albanese JAF. In‐situ ATR‐IR Spectroscopy Reveals Complex Absorption‐Diffusion Dynamics in Model Polymer‐Membrane‐Catalyst Assemblies (PCMA). ChemCatChem 2022. [DOI: 10.1002/cctc.202101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Joao Enes da Silva
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Aayan Banerjee
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Leon Lefferts
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Jimmy Alexander Faria Albanese
- Universiteit Twente MESA+ Faculty of Science and Technology Drienerlolaan 5Meander ME361Netherlands 7522NB Enschede NETHERLANDS
| |
Collapse
|
4
|
Lacroix MR, Liu Y, Strauss SH. Room-Temperature FTIR Spectra of the Cyclic S4 (H 2O) 4 Cluster in Crystalline Li 2(H 2O) 4(B 12F 12): Observation of B and E ν(OH) Bands and Coupling of Strong O–H···O and Weak O–H···F Vibrations. J Phys Chem A 2019; 123:9781-9790. [DOI: 10.1021/acs.jpca.9b07628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew R. Lacroix
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yong Liu
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado 80217, United States
| | - Steven H. Strauss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Lacroix MR, Liu Y, Strauss SH. Hydrated Metal Ion Salts of the Weakly Coordinating Fluoroanions PF 6-, TiF 62-, B 12F 122-, Ga(C 2F 5) 4-, B(3,5-C 6H 3(CF 3) 2) 4-, and Al(OC(CF 3) 3) 4-. In Search of the Weakest HOH···F Hydrogen Bonds. Inorg Chem 2019; 58:14900-14911. [PMID: 31617354 DOI: 10.1021/acs.inorgchem.9b02646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FTIR spectra of microcrystalline samples of 11 metal ion salt hydrates of a variety of weakly coordinating fluoroanions are reported. The compounds studied were Li(H2O)4(Al(OC(CF3)3)4), Li(H2O)(B(3,5-C6H3(CF3)2)4), Li(H2O)n(Ga(C2F5)4), Li(H2O)(PF6), Li2(H2O)2(TiF6), Li2(H2O)4(B12F12), Na(H2O)(PF6), Na2(H2O)2(B12F12), K2(H2O)2(B12F12), Rb2(H2O)2(B12F12), Cs2(H2O)(B12F12), and their partially or completely deuterated isotopologs and isotopomers. The O-D···F hydrogen bonds in Li(HOD)(H2O)3(Al(OC(CF3)3)4) (ν(OD) = 2706 cm-1), Li(HOD)(B(3,5-C6H3(CF3)2)4) (ν(OD) = 2705 cm-1), and Li(HOD)(H2O)n(Ga(C2F5)4) (ν(OD) = 2697 cm-1) rival HOD absorbed in polyvinylidene difluoride (ν(OD) = 2696 cm-1) and HOD···FCH3 in a frozen Ar matrix (ν(OD) = 2685 cm-1) for the weakest hydrogen bonds between a water molecule and an F atom in any compound. As weak as they are, minor differences in O-H···F hydrogen bonds in the same fluoroanion salt can be distinguished spectroscopically. Uncoupled HOD molecules in asymmetric F···HOD···F' hydrogen bonding environments in Rb+, Cs+, Mg2+, and Co2+ hydrates of B12F122- gave rise to two observable ν(OD) bands even though the two R(O···F) distances differ by only 0.010(4) Å (Mg2+), 0.033(2) Å (Co2+), 0.074(4) Å (Rb+), and 0.106(6) Å (Cs+). A plot of ν(OD) for hydrates with a single uncoupled HOD molecule per metal ion (e.g., Li(HOD)(H2O)3(Al(OC(CF3)3)4)) vs R(O···F) distance from single-crystal X-ray or neutron diffraction structures was prepared. The ν(OD) values range from 2305 to 2706 cm-1 and the R(O···F) distances range from 2.58 to 3.17 Å. The plot consists of 53 {ν(OD), R(O···F)} data points, 23 of which are new and have ν(OD) > 2600 cm-1, in contrast to a 1994 ν(OD) vs R(O···F) plot with 28 data points, none of which had ν(OD) > 2600 cm-1. There is a clear and significant difference between the new ν(OD) vs R(O···F) plot and a literature ν(OD) vs R(O···O) plot for hydrates containing O-D···O hydrogen bonds. For a given ν(OD) stretching frequency, the exponential regression curves show that R(O···F) is typically 0.1-0.2 Å shorter than R(O···O), in harmony with the lower basicity and smaller size of F atoms vs O atoms.
Collapse
Affiliation(s)
- Matthew R Lacroix
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Yong Liu
- Department of Chemistry , University of Colorado at Denver , Denver , Colorado 80217 , United States
| | - Steven H Strauss
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
6
|
Lacroix MR, Gao X, Liu Y, Strauss SH. Unusually sharp FTIR ν(OH) bands and very weak O H⋯F hydrogen bonds in M2(H2O)1,2B12F12 hydrates (M Na Cs). J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lacroix MR, Bukovsky EV, Lozinšek M, Folsom TC, Newell BS, Liu Y, Peryshkov DV, Strauss SH. Manifestations of Weak O-H···F Hydrogen Bonding in M(H 2O) n(B 12F 12) Salt Hydrates: Unusually Sharp Fourier Transform Infrared ν(OH) Bands and Latent Porosity (M = Mg-Ba, Co, Ni, Zn). Inorg Chem 2018; 57:14983-15000. [PMID: 30444604 DOI: 10.1021/acs.inorgchem.8b02786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eight M(H2O) n(Z) salt hydrates were characterized by single-crystal X-ray diffraction (Z2- = B12F122-): M = Ca, Sr, n = 7; M = Mg, Co, Ni, Zn, n = 6; M = Ba, n = 4, 5. Weak O-H···F hydrogen bonding between the M(H2O) n2+ cations and Z2- resulted in room-temperature Fourier transform infrared (FTIR) spectra having sharp ν(OH) bands, with full widths at half max of 10-30 cm-1, which are much more narrow than ν(OH) bands in room temperature FTIR spectra of most salt hydrates. Clearly resolved νasym(OH/OD) and νsym(OH/OD) bands with Δν(OH) as small as 17 cm-1 and Δν(OD) as small as 11 cm-1 were observed (Δν(OX) = νasym(OX) - νsym(OX)). The isomorphic hexahydrates ( R3̅) have two fac-(H2O)3 sets of H2O ligands and nearly octahedral coordination spheres. They exhibited four resolvable ν(OH) bands, one νasym(OH)/νsym(OH) pair for H2O ligands with longer O(H)···F distances and one νasym(OH)/νsym(OH) pair for H2O ligands with shorter O(H)···F distances. The ν(OH) bands for the three H2O molecules with shorter, slightly stronger O(H)···F hydrogen bonds were broader, more intense, and red-shifted by ca. 25 cm-1 relative to the bands for the three other H2O molecules, the first time that such small differences in relatively weak O(H)···F hydrogen bonds in the same crystalline hexahydrate have resulted in observable IR spectroscopic differences at room temperature. For the first time room temperature ν(OH) values for salt hexahydrates showed the monotonic progression Mg2+ > Co2+ > Ni2+ > Zn2+, essentially the same progression as the p Ka values for these metal ions in aqueous solution. A further manifestation of the weak O-H···F hydrogen bonding in these hydrates is the latent porosity exhibited by Ba(H2O)5,8(Z), Sr(H2O) n,m(Z), and Ca(H2O)4,6(Z). Finally, the H2O/D2O exchange reaction Co(D2O)6(Z) → Co(H2O)6(Z) was ca. 50% complete in 1 h at 50 °C in N2/17 Torr H2O( g).
Collapse
Affiliation(s)
- Matthew R Lacroix
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Eric V Bukovsky
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matic Lozinšek
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Inorganic Chemistry and Technology , Jožef Stefan Institute , 1000 Ljubljana , Slovenia
| | - Travis C Folsom
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Brian S Newell
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Yong Liu
- Department of Chemistry , University of Colorado at Denver , Denver , Colorado 80000 , United States
| | - Dmitry V Peryshkov
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Steven H Strauss
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
8
|
Vander Wall AC, Lakey PSJ, Rossich Molina E, Perraud V, Wingen LM, Xu J, Soulsby D, Gerber RB, Shiraiwa M, Finlayson-Pitts BJ. Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1593-1610. [PMID: 30382275 DOI: 10.1039/c8em00348c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients (γ) at the shortest reaction times accessible in these experiments ranged from 3 × 10-4 to 9 × 10-6 and partition coefficients (K) from 1 × 107 to 9 × 104. Trends in γ did not quantitatively follow trends in K, suggesting that the intermolecular forces involved in gas-surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.
Collapse
Affiliation(s)
- A C Vander Wall
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|